

MITTEILUNGEN Nr. 25, Dezember 2008 (Workshop 2008)

 ISSN 0177-0454

GESELLSCHAFT FÜR INFORMATIK E.V.
PARALLEL-ALGORITHMEN, -RECHNERSTRUKTUREN

UND -SYSTEMSOFTWARE

INFORMATIONSTECHNISCHE GESELLSCHAFT IM VDE

PARS

Computergraphik von: Georg Nees, Generative Computergraphik

I n h a l t

9. PASA-Workshop Dresden 5
PARS (Berichte, Aktivitäten, Satzung) 107
22. PARS-Workshop 2009 (Parsberg, 4./5. Juni 2009)
http://www.ra.informatik.tu-darmstadt.de/pars/2009 115

ARCS 2009 (Delft, 10.-13. März 2009) 116

Euro-Par 2009 (Delft, 25.-28. August 2009) 118

Aktuelle PARS-Aktivitäten unter:
• http://www.pars.gi-ev.de/

PARS-Mitteilungen

Gesellschaft für Informatik e.V.,
Parallel-Algorithmen, -Rechnerstrukturen

und -Systemsoftware

Offizielle bibliographische Bezeichnung bei Zitaten:
Mitteilungen - Gesellschaft für Informatik e. V.,
Parallel-Algorithmen und Rechnerstrukturen, ISSN 0177 - 0454

PARS-Leitungsgremium:

Prof. Dr. Helmar Burkhart, Univ. Basel
Dr. Andreas Döring, IBM Zürich
Prof. Dr. Dietmar Fey, Univ. Jena
Prof. Dr. Rolf Hoffmann, Sprecher, TU Darmstadt
Prof. Dr. Wolfgang Karl, Univ. Karlsruhe
Prof. Dr. Jörg Keller, FernUniversität Hagen
Prof. Dr. Christian Lengauer, Univ. Passau
Prof. Dr.-Ing. Erik Maehle, Universität zu Lübeck
Prof. Dr. Ernst W. Mayr, TU München
Prof. Dr. Wolfgang E. Nagel, TU Dresden
Dr. Karl Dieter Reinartz, stellv. Sprecher, Univ. Erlangen-Nürnberg
Prof. Dr. Hartmut Schmeck, Univ. Karlsruhe
Prof. Dr. Theo Ungerer, Univ. Augsburg
Prof. Dr. Helmut Weberpals, TU Hamburg Harburg

Die PARS-Mitteilungen erscheinen in der Regel einmal pro Jahr. Sie befassen sich mit allen Aspekten
paralleler Algorithmen und deren Implementierung auf Rechenanlagen in Hard- und Software.

Die Beiträge werden nicht redigiert, sie stellen die Meinung des Autors dar. Ihr Erscheinen in diesen
Mitteilungen bedeutet keine Einschränkung anderweitiger Publikation.

Die Homepage

http://www.pars.gi-ev.de/

vermittelt aktuelle Informationen über PARS.

CALL FOR PAPERS

9th Workshop on Parallel Systems and Algorithms
PASA 2008

in Conjunction with
 21st International Conference on Architecture of Computing Systems (ARCS)

Dresden, Germany, February 25th to 28th, 2008

organized by
GI/ITG-Fachgruppe 'Parallel-Algorithmen, - Rechnerstrukturen und - Systemsoftware' (PARS) and

GI-Fachgruppe 'Parallele und verteilte Algorithmen' (PARVA)

The PASA workshop series has the goal to build a bridge between theory and practice in the area of parallel
systems and algorithms. In this context practical problems which require theoretical investigations as well as
the applicability of theoretical approaches and results to practice shall be discussed. An important aspect is
communication and exchange of experience between various groups working in the area of parallel computing,
e.g. in computer science, electrical engineering, physics or mathematics.

Topics of Interest include, but are not restricted to:

- parallel architectures & storage systems - interconnection networks
- parallel embedded systems - reconfigurable parallel computing
- ubiquitous and pervasive systems - distributed and parallel multimedia systems
- models of parallel computation - performance evaluation of parallel systems
- data stream-oriented computing - software engineering for parallel systems
- parallel and distributed algorithms - parallel programming languages
- network and grid computing - new technologies & architectures (SoC, Multicores, PIM, etc.)
- parallel organic computing - alternative technologies (e.g. quantum or DNA computing)

The workshop will comprise invited papers on current topics of leading experts in the field as well as submitted
papers. The accepted papers shall have a length of about 10 pages A4 and will be published in the ARCS
Workshop Proceedings as well as in the PARS Newsletter (ISSN 0177-0454). For ARCS 2008 participants the
workshop is included in the conference fee, for participation in the workshop alone, only a reduced fee is due.
The conference languages are English (preferred) and German. Papers are required to be in English.

A prize of 500 € will be awarded to the best contribution presented personally based on a student's or
Ph.D. thesis.

Important Dates

23rd Nov. 2007: Deadline for electronic submission of full papers of about 10 pages or extended abstracts of
about 3 to 4 pages length (in English) under: http://www.ra.informatik.tu-darmstadt.de/pasa/2008/
14th Dec. 2007: Notification of the authors
28th Dec. 2007: Final version for workshop proceedings

Program Committee

H. Burkhart (Basel), A. Döring (Zürich), W. Erhard (Jena), R. Hoffmann (Darmstadt), F. Hoßfeld (Jülich),
W. Karl (Karlsruhe), J. Keller (Hagen), Ch. Lengauer (Passau), E. Maehle (Lübeck), E. W. Mayr (München),
F. Meyer auf der Heide (Paderborn), W. E. Nagel (Dresden), K. D. Reinartz (Höchstadt), U. Rüde (Erlangen),
P. Sanders (Karlsruhe), Ch. Scheideler (München), H. Schmeck (Karlsruhe), U. Schwiegelshohn (Dortmund),
P. Sobe (Lübeck), T. Ungerer (Augsburg), R. Wanka (Erlangen), H. Weberpals (Hamburg-Harburg),
M. Zitterbart (Karlsruhe)

Organisation

Prof. Dr. Wolfgang E. Nagel, Technische Universität Dresden, Zentrum für Informationsdienste und
Hochleistungsrechnen (ZIH), D-01062 Dresden, Tel. +49-351-463-35450, Fax +49-351-463-37773
E-Mail: wolfgang.nagel@tu-dresden.de

Prof. Dr.-Ing. Rolf Hoffmann, FG Rechnerarchitektur, FB Informatik, TU Darmstadt, Hochschulstr. 10,
D-64289 Darmstadt, Tel. 06151-16-3611/3606, Fax 06151-165410
E-Mail: hoffmann@informatik.tu-darmstadt.de

http://www.ra.informatik.tu-darmstadt.de/pasa/2008/
http://arcs08.inf.tu-dresden.de/
http://www.ra.informatik.tu-darmstadt.de/pasa/2008/
mailto:wolfgang.nagel@tu-dresden.de
mailto:hoffmann@informatik.tu-darmstadt.de

9. PASA-Workshop
 Seite

Invited Talk

Towards PetaFlops Computing with IBM Blue Gene ... 7
Norbert Attig, Friedel Hossfeld (Research Center Juelich)

GRID and Parallel Computing

Specifying and Processing Co-Reservations in the Grid ... 10
Thomas Röblitz (Zuse Institute Berlin)

Grid Virtualization Engine: Providing Virtual Resources for Grid Infrastructure 20
Emeric Kwemou, Lizhe Wang, Jie Tao, Marcel Kunze,
David Kramer, Wolfgang Karl (Universität Karlsruhe, Forschungszentrum Karlsruhe)

High Performance Multigrid on Current Large Scale Parallel Computers 30
Tobias Gradl, Ulrich Rüde (Universität Erlangen-Nürnberg)

Parallel Computing Systems

SDVM^R: A Scalable Firmware for FPGA-based Multi-Core Systems-on-Chip 39
Andreas Hofmann, Klaus Waldschmidt (Universität Frankfurt)

Adaptive Cache Infrastructure: Supporting Dynamic Program Changes
following Dynamic Program Behavior .. 49
Fabian Nowak, Rainer Buchty, Wolfgang Karl (Universität Karlsruhe)

A Generic Tool Supporting Cache Designs and Optimisation on
Shared Memory Systems .. 59
Martin Schindewolf, Jie Tao, Wolfgang Karl, Marcelo Cintra
(Universität Karlsruhe, University of Edinburgh – United Kingdom)

Computation in Parallel

Parallel Derivative Computation using ADOL-C .. 70
Andreas Kowarz, Andrea Walther (Technische Universität Dresden)

How Efficient are Creatures with Time-shuffled Behaviors? ... 80
Patrick Ediger, Rolf Hoffmann, Mathias Halbach (Technische Universität Darmstadt)

Applications for the Cell Broadband Engine

Hybrid Parallel Sort on the Cell Processor .. 91
Jörg Keller, Christoph Kessler, Kalle König, Wolfgang Heenes
(FernUniversität in Hagen, Linköpings Universitet - Sweden,
Technische Universität Darmstadt)

An Optimized ZGEMM Implementation for the Cell BE .. 97
Timo Schneider, Torsten Hoefler, Simon Wunderlich, Torsten Mehlan
Wolfgang Rehm (Technische Universität Chemnitz, Indiana University - USA)

5

6

Towards PetaFlops Computing with IBM Blue Gene

Norbert Attig and Friedel Hoßfeld

Jülich Supercomputing Centre (JSC)
Forschungszentrum Jülich GmbH

52425 Jülich
n.attig@fz-juelich.de

f.hossfeld@fz-juelich.de

Abstract: Driven by technology, Scientific Computing is rapidly entering the
PetaFlops era. The Jülich Supercomputing Centre is focusing on the IBM Blue
Gene architecture to provide computer resources of this class to its users. Details of
the system will be discussed and applications will be introduced which
significantly benefit from this new architecture.

1 Introduction

In many areas, numerical simulations are the essential method for achieving innovative,
high-quality results. Driven by the rapid development in computer technology, this
insight has dramatically increased the requirements of computational scientists with
respect to application performance, memory, data storage and data transfer capabilities
[BHL05, Ko06]. Currently, only high-performance supercomputers with a large number
of processors are capable to fulfil these needs.

The Jülich Supercomputing Centre, one of three national supercomputing centres, has
implemented a dual supercomputer concept to provide computational scientists with
adequate computing resources. On one side, a moderately parallel cluster serves about
150 user groups from academia and research institutions. This system allows the
development of parallel codes as well as the execution of small to mid-size projects. For
applications which scale up to thousands of processors, on the other side, IBM Blue
Gene systems are available, serving as Leadership-class systems addressing the
PetaFlops scale. Here, a much smaller number of projects are granted to give selected
researchers the opportunity to get new insights into complex problems which were out of
reach before.

7

2 IBM Blue Gene systems at JSC

When in 2004/2005 the IBM Blue Gene technology became available, the Jülich
Supercomputing Centre recognised the potential of this architecture as a Leadership-
class system for capability computing applications. In early summer 2005, Jülich started
testing a single Blue Gene/L rack with 2,048 processors [AW05]. It soon became
obvious that many more applications than initially expected were ported to efficiently
run on the Blue Gene architecture. Therefore, in January 2006 the system was expanded
to 8 racks with 16,384 processors, funded by the Helmholtz Association. The 8-rack
system has successfully been in operation for almost two years now. Today, about 30
research groups, which were carefully selected with respect to their scientific quality, run
their applications on the system using job sizes between 1,024 and 16,384 processors.

In early 2007, Research Centre Jülich decided to order a powerful next-generation Blue
Gene system. In October 2007, a 16-rack Blue Gene/P system with 65,536 processors
was installed [SW07], mainly financed by the Helmholtz Association and the State of
North Rhine Westphalia. With its peak performance of 222.8 TFlop/s, Jülich’s Blue
Gene/P – alias JUGENE – is currently the biggest supercomputer in Europe and ranked
No 2 worldwide.

The important differences between Blue-Gene/P and Blue Gene/L largely concern the
processor and the networks while the principal build-up of Blue Gene/L was kept
unchanged. Key features of Blue Gene/P are:

4 PowerPC® 450 processors are combined in a fully 4-way SMP (node) chip
which allows a hybrid programming model with MPI and OpenMP (up to 4
threads per node).

The network interface is fully DMA (Direct Memory Access) capable which
increases the performance while reducing the processor load during message
handling.

The available memory per processor has been doubled.

The external I/O network has been upgraded from 1 to 10 Gigabit Ethernet.

A key feature of this architecture is its scalability towards PetaFlops computing based on
low power consumption, small footprint and an outstanding price performance ratio.

8

3 Running Applications on Blue Gene

Due to the fact that the Blue Gene systems are well balanced in terms of processor
speed, memory latency, and network performance, many applications scale reasonably
up to large numbers of processors. More surprising was that so many applications could
be ported to and run efficiently on this new architecture which in a forerunner version
was mainly designed to perform lattice quantum chromo dynamics (LQCD) codes. Blue
Gene applications at JSC cover a broad spectrum ranging from LQCD to MD codes like
CPMD and VASP, materials science, protein folding codes, fluid flow research,
quantum computing and many, many others.

The performance and the scaling behaviour of the applications are continuously being
improved in close collaboration between the user support team at JSC and the
corresponding computational scientists. For example, a code from theoretical elementary
particle physics runs now on Blue Gene/P at nearly 40 % of the peak performance
compared to about 25 % on Blue Gene/L. In this context Blue Gene Scaling Workshops,
where experts from Argonne National Laboratory, IBM and Jülich help to further
optimise some important applications are highly welcome. Computational scientists from
many research areas take the chance to improve their codes during these events and then
later apply for significant shares of Blue Gene computer time to tackle unresolved
questions which were out of reach before.

References

[AW05] Attig, N., Wolkersdorfer, K.: IBM Blue Gene/L in Jülich: A First Step to Petascale
Computing. In inSiDE, 3, 2005, 2, S. 18-19

[BHL05] Bode, A., Hillebrandt, W., Lippert, T: Petaflop-Computing mit Standort Deutschland im
europäischen Forschungsraum, Bedarf und Perspektiven aus Sicht der
computergestützten Natur- und Ingenieurwissenschaft. "Scientific Case" im Auftrag des
BMBF, Bonn, 2005

[Ko06] Koski, K. et al.: "European Scientific Case for high-end computing". HPC in Europe
Task Force, http://www.hpcineuropetaskforce.eu/draftdeliverables

[SW07] Stephan, M., Wolkersdorfer, K.: IBM BlueGene/P in Jülich: The Next Step towards
Petascale Computing. In inSiDE, 5, 2007, 2, S. 46-47

9

Specifying and Processing Co-Reservations in the Grid

Thomas Röblitz

Zuse Institute Berlin, Takustr. 7, D-14195 Berlin, Germany

roeblitz@zib.de

Abstract: Executing complex applications on Grid infrastructures necessitates the guaran-
teed allocation of multiple resources. Such guarantees are often implemented by means of
advance reservations. Reserving resources in advance requires multiple steps – beginning
with their description to their actual allocation. In a Grid, a client possesses little knowl-
edge about the future status of resources. Thus, manually specifying successful parameters
of a co-reservation is a tedious task. Instead, we propose to parametrize certain reservation
characteristics (e.g., the start time) and to let a client define criteria for selecting appropri-
ate values. Then, a Grid reservation service processes such requests by determining the
future status of resources and calculating a co-reservation candidate which satisfies the cri-
teria. In this paper, we present the Simple Reservation Language (SRL) for describing the
requests, demonstrate the transformation of an example request into an integer program us-
ing the Zuse Institute Mathematical Programming Language (ZIMPL) and experimentally
evaluate the time needed to find the optimal co-reservation using CPLEX.

1 Introduction

In many scientific disciplines, large scale simulations and workflows for analyzing petascale

data sets necessitate the adoption of Grid technologies to meet their demanding resource re-

quirements. The use of Grid resources, however, poses new challenges, because of their hetero-

geneity, geographic distribution and autonomous management. Especially, the efficient execu-

tion of complex applications, e.g., large simulations of black holes with Cactus or distributed

observations of astronomic objects with robotic telescope as envisioned in the AstroGrid-D

project [GAC07], requires the co-allocation of multiple Grid resources. Because Grid re-

sources are autonomously managed, the allocation of them at the same time or in some se-

quence cannot be guaranteed by standard Grid job management schemes, i.e., a broker decides

where to submit a job, but has no control on when the job is actually executed.

This problem can be circumvented by acquiring reservations for the required resources. A

reservation guarantees that a specific resource can be allocated to a request at the desired

time. Typically, reservations have a fixed duration and are acquired some time in advance.

Considering the vast number of resources eligible for reservation, a user may pose constraints

on which resources are selected. In addition, the provider may want to optimize the utilization

of their resources. Hence, a broker has to solve a complex optimization problem to find a

mapping of application components to resources at specific times.

In this paper, we model the mapping problem as an integer programming problem and use a

standard solver to find its best solution. We use the Zuse Institute Mathematical Program-
ming Language (ZIMPL) [Koc04] to describe the integer programming problem and the solver

CPLEX for finding the solution. To simplify the specification of co-reservation requests, we

10

propose a simple language for defining the requirements of each part along with the objec-

tive to be optimized. Throughout the paper, we reuse an example presented in our previous

work [RR05]. The example describes a co-reservation request including temporal and spatial

relationships between atomic request parts.

Reserve 16 CPUs of an IBM p690, 32 CPUs of a PC cluster and a one Gbit/s-network connection
between them, each for six hours between 2007/12/12 06:00pm and 2007/12/15 06:00pm. All reser-
vations must start at the same time. Reserve a visualization pipeline for two hours starting four
hours after the reservation on the IBM p690 begins and a 100 Mbit/s-network connection between
the p690 and the visualization pipeline for the same time.

Outline. We summarize related work in Section 2. The general procedure for processing

co-reservation requests is presented in Section 3. Section 4 describes the Simple Reservation
Language (SRL) for specifying requests in detail. Thereafter, we demonstrate – using the

scenario described above – the transformation of SRL requests into an optimization problem

in Section 5. Then, we present an experimental evaluation of the times to find an optimal

co-reservation candidate in Section 6 and conclude in Section 7.

2 Related Work

In [FKL+99], Foster et al. present GARA, a resource management architecture for reserving

multiple resources in advance. The focus of their work is on the general scheme to guaran-

tee that an application can co-allocate multiple resources at specific times. They also discuss

needed extensions of existing local resource management such that they support advance reser-

vations. Our work focuses on the description and processing of co-reservation requests. The

needed components for processing requests are similar to those in GARA. Hence, our mecha-

nism could be easily integrated in their framework.

Condor ClassAds, proposed by Raman et al. [RLS98], provides a mechanism for matching

atomic requests to resources. Condor ClassAds is a very versatile language to specify both

a user’s request and the offers of the resource providers. The language we propose for de-

scribing reservation requests is conceptually similar to ClassAds, because it is also based on

(attribute, value)-pairs and allows references between different matching parties. The main

reason for not using pure ClassAds was that the processing of them differs from the processing

of multi-resource reservation requests. Liu and Foster extend Condor ClassAds by applying

constraint programming techniques to the problem of selecting resources for execution of im-

mediate requests in a Grid environment [LF03].

In [NLYW05], Naik et al. present an integer programming based approach for assigning

requests to heterogeneous resources. In contrast to our work, they consider immediate re-

quests only. That is the resource manager tries to match as many requests to resources at

the current time. Scheduling requests at future times is not considered. The VIOLA meta-

scheduler [WWZ05] schedules parallel compute jobs to multiple resources by incrementally

increasing the advance booking period until all jobs may be allocated. In contrast to our work,

it only supports one criteria – earliest completion time.

11

3 The Reservation Framework

The framework consists of the three main components: the Grid Reservation Service (GRS),
the Local Reservation Service (LRS), and the Resource Information Service (RIS). The general

procedure for processing co-reservation requests is as follows.

� A user sends a request described by the Simple Reservation Language to the GRS.

� The GRS queries the RIS to determine resources which support advance reservation and

match the core characteristics such as type and operating system.

� The GRS sends probe requests to the LRSes of these resources to let them provide de-

tailed information about their future status and reservation fees.

� The GRS transforms the user request including the probed information into the ZIMPL
format and thereby instantiates the optimization problem.

� The GRS determines the best co-reservation candidate. A co-reservation candidate maps

each request part to a (resource, starttime)-pair.

� The GRS tries to acquire the reservations given by the best co-reservation candidate.

Thus, for each (resource, starttime)-pair the GRS sends a reserve request to the LRS

of the resource resource.

� If some reserve requests are denied, the GRS refines the optimization problem and pro-

ceeds with step �.

� If all reserve requests are admitted or no solution could be found eventually, the GRS

sends a response message to the client.

Note, in this paper we focus on the steps �, � and �. Step � is implemented in todays

Grid resource brokers (cf. Section 2). Methods for determining the future status of resources

are described in our previous work [RR06, RSR06]. The actual acquiring of the reservations

(step �) and the refinement in case of failures (step �) are subject to future work.

4 The Simple Reservation Language

The purpose of the Simple Reservation Language (SRL) is twofold. First, it enables clients

to easily describe reservation requests without requiring them to know the details of a math-

ematical programming language. Second, the Grid Reservation Service (GRS) can efficiently

pre-process reservation requests, because the SRL uses a small set of attributes and limited

value domains only. Despite these restrictions, the language is powerful enough to describe

a large variety of requests as will be seen in the following subsections. As outlined in the

introduction, we regard the co-reservation problem as an optimization problem. Formally, a

co-reservation request must define a set of variables including their domains, a set of con-

straints on these variables’ domains and an objective function which is to be optimized. The

SRL follows a less formal approach by letting a user define certain attributes, i.e., the SRL

vocabulary, which are transformed into the corresponding mathematical terms.

12

Table 1: Attribute scopes of the Simple Reservation Language.

Used in Scope Description

key & value TS Temporal specification of a request

key & value QOS QoS specification of a request

key & value MISC Miscellaneous attributes of a request

key CON Constraints of a request

key OBJ Objectives of a request

value RVC Attributes of a reservation candidate

4.1 Structure of a Co-Reservation Request

A co-reservation request consists of multiple atomic requests as well as constraints and objec-

tives defining the relationships between any two atomic requests. Each SRL request is a set of

(attribute, value)-pairs. The domain of a value depends on the attribute and will be discussed

in the following subsections. The syntax of an attribute is defined as

<attribute> := <id>’.’<scope>’.’<key>.

The key of an attribute is an alpha-numeric string. For each scope there exist several keys

with a pre-defined meaning which we will present along with the discussion of the scopes. In

addition, any other string may be used, but its meaning is only defined by the request itself.

The scope denotes a specific group of attributes. We distinguish three kinds of scopes, based

on its appearance in an (attribute, value)-pair (cf. Table 1). The component <id> associates

attributes with a specific part of a co-reservation request. Thus, it is possible to reference

attributes of a specific part from within any other part.

4.2 Description of Atomic Requests

The vocabulary of the SRL must cope with the following issues to describe a (meaningful)

atomic request:

• When should the resource be reserved?

• Type and quantity of the resource to be reserved.

• Which constraints must be met?

• Which criteria should be optimized?

Temporal specification. The scope TS defines three attributes est (earliest start time), let
(latest end time) and duration for specifying, when the resource should be reserved. The

values can be given as epoch seconds or UTC1 string.

1UTC stands for Coordinated Universal Time.

13

Quality-of-Service Specification. The scope QOS defines attributes for specifying what type

of resource and what quantity or quality of this resource should be reserved. These attributes

are QOS.type, QOS.cpus, QOS.netbw, QOS.diskspace. The GRS does not handle

the differences among the corresponding resource types internally. It must just ensure to con-

tact the right local reservation service for each type of resource. The values for QOS.type
are compute, network, storage and visualize. The values for the corresponding

quantity attributes are within the usual domains.

Miscellaneous Attributes. The scope MISC may contain any attribute which does not fit

into the previous categories. For example, it may be used to associate a user id or certificate

with a request which could be necessary for authentication and authorization.

Constraint Specification. The scope CON is used to define constraints on any attributes of

all scopes except CON and OBJ. The key of a CON-attribute can be any alpha-numeric string.

Two different attributes must not use the same key. The syntax of the value of a CON-attribute

is defined as follows.

<con value> := <expr><op><expr>
<expr> := <attribute>|<quantity>
<op> := ’<’|’<=’|’==’|’!=’|’>=’|’>’

The term <attribute> refers to any attribute (except for the scopes CON and OBJ). For

example, the cost IBM.RVC.cost for reserving the requested resources could be limited.

The term <quantity> specifies a quantity such as 100 Mbit/s.

Objectives Specification. The scope OBJ defines the objective of the request. The objective

is the weighted sum of all sub-objectives. A client must assign a weight to each sub-objective

such that their sum equals one. Because the range of values of the sub-objective attributes may

be very different and not known a-priori, each attribute must be normalized. The syntax of the

actual sub-objective specification is as follows.

<obj> := {’min’|’max’}’,’<attribute>’,’<weight>
The term <attribute> refers to any attribute (except for the scopes CON and OBJ). For

example, to execute the application on the IBM p690 at the earliest moment, the sub-objective

is min,IBM.RVC.begin,0.6.

Reservation Candidates. The scope RVC contains attributes of a ReserVation Candidate,

which are determined in the probing phase (cf. step �).

4.3 Description of Co-Reservation Requests

A co-reservation request consists of multiple atomic requests, additional constraints and ob-

jectives defining the relationships among the atomic parts. Relationships among different parts

are enabled by the identifier component <id> of an attribute’s key. Thus, attributes of the

14

part <id> can be referenced in the constraints and objectives of any other part. For example,

the same time-constraint in the introduction’s scenario can be specified as IBM.RVC.begin
== PCC.RVC.begin. This scheme is very flexible. Also, workflow-like applications may

be modeled, i.e., that one part should start only after another has finished. In that case the

constraint would be VIS.RVC.begin >= IBM.RVC.end. Additionally, objectives may

reference attributes in different parts. For example, the above workflow application may desire

that its whole execution time is minimized. Such goal can be specified by the sub-objective

min,VIS.RVC.end-PCC.RVC.begin,10. In Fig. 1, the main parts of the scenario of

the introduction are described using the Simple Reservation Language.

IBM.TS.est = Dec 12 18:00:00 2007 PCC.QOS.cpus = 32

IBM.TS.duration = 21600 PCC.QOS.arch = "PC cluster"

IBM.TS.let = Dec 15 18:00:00 2007 PCC.CON.time = PCC.RVC.begin

IBM.QOS.type = compute == IBM.RVC.begin

IBM.QOS.cpus = 16 VIS.TS.duration = 7200

IBM.QOS.arch = "IBM p690" VIS.TS.let = Dec 15 18:00:00 2007

IBM.CON.cost = IBM.RVC.cost <= 10000 VIS.QOS.type = visualize

IBM.OBJ.cost = min,IBM.RVC.cost,8 VIS.QOS.cpus = 4

IBM.OBJ.start = min,IBM.RVC.begin,10 VIS.QOS.arch = "SGI Onyx"

PCC.TS.duration = 21600 VIS.CON.time = PCC.RVC.begin+14400

PCC.QOS.type = compute == VIS.RVC.begin

Figure 1: A co-reservation request described in SRL (in extracts).

5 Transforming SRL Requests into ZIMPL

In the following, we exemplify how SRL requests are transformed into the Zuse Institute Math-
ematical Programming Language (ZIMPL) [Koc04]. The result can then be used by standard

integer programming solvers to find the best reservation candidate. Listing 1 shows the com-

plete implementation of the scenario described in the introduction. It consists of seven parts,

which we will now explain in detail.

Request Structure. The number of atomic request parts is read from a configuration file in

line 2. The example co-reservation request contains 5 parts (one IBM p690, one PC cluster,

one network link IBM–PC, one SGI visualization resource and one network link SGI–IBM).

Reservation Candidates. The set of reservation candidates is initialized in line 5. This set

is transformed into a multi-dimensional array (lines 6–8) to make individual metrics of a can-

didate accessible. Note, by separating the reservation candidates for each part (first index in

array rvc), we ensure that a request is matched to a resource with the required type.

Model Variables. Each atomic request r ∈ R must be assigned to a resource s ∈ S at a

certain start time t ∈ T . Thus, we model the problem with R×S×T binary variables (line 11).

The variable xb[r, s, t] is set to 1 iff the atomic request r is assigned to resource s at start time t.

15

Matching and Cost Constraints. We constrain the number of binary variables set to 1 such

that each request part is only once assigned to a resource (line 14). The total cost for all parts

of the co-reservation are limited in line 15.

Listing 1: Implementation of the example scenario as integer program in ZIMPL.

1 # request pa r t s
2 set P := { read ” req . dat ” as ”<1n>” comment ” # ” } ;
3

4 # rese rva t i on candidates
5 set PRTMV := { read ” rvc . dat ” as ”<1n ,2n ,3n ,4n ,5n>” comment ” # ” } ;
6 se t RVC := p r o j (PRTMV, <1,2,3>);
7 se t METRIC := p r o j (PRTMV, <4>);
8 param rvc [RVC∗METRIC] := read ” rvc . dat ” as ”<1n ,2n ,3n ,4n> 5n ” comment ” # ” d e f a u l t 100;
9

10 # model v a r i a b l e s
11 var xb [RVC] b inary ;
12

13 # matching , type and cost c o n s t r a i n t s
14 subto once : f o r a l l <p> i n P : (sum <p , i , j> i n RVC: xb [p , i , j]) == 1;
15 subto cost : (sum <p , i , j> i n RVC: xb [p , i , j]∗ rvc [p , i , j , 1]) <= 10000;
16

17 # temporal r e l a t i o n s h i p s
18 subto temp1 : sum <1, i , j> i n RVC: xb [1 , i , j]∗ j == sum <2,m, n> i n RVC: xb [2 ,m, n]∗n ;
19

20 subto temp2 : sum <1, i , j> i n RVC: xb [1 , i , j]∗ j == sum <3,m, n> i n RVC: xb [3 ,m, n]∗n ;
21

22 subto temp3 : sum <1, i , j> i n RVC: xb [1 , i , j]∗ (j +14400) == sum <4,m, n> i n RVC: xb [4 ,m, n]∗n ;
23

24 subto temp4 : sum <4, i , j> i n RVC: xb [4 , i , j]∗ j == sum <5,m, n> i n RVC: xb [5 ,m, n]∗n ;
25

26 # s p a t i a l r e l a t i o n s h i p s
27 set NET := p r o j ({ read ” net . dat ” as ”<1n ,2n>” comment ” # ” } , <1>);
28 se t ENDS := { <1>, <2> } ;
29 param net [NET∗ENDS] := read ” net . dat ” as ”<1n ,2n> 3n ” comment ” # ” ;
30

31 subto spat1 : sum <1, i , j> i n RVC: xb [1 , i , j]∗ i ==
32 sum <m> i n NET: sum <3,m, n> i n RVC: xb [3 ,m, n]∗ net [m, 1] ;
33

34 subto spat2 : sum <2, i , j> i n RVC: xb [2 , i , j]∗ i ==
35 sum <m> i n NET: sum <3,m, n> i n RVC: xb [3 ,m, n]∗ net [m, 2] ;
36

37 subto spat3 : sum <1, i , j> i n RVC: xb [1 , i , j]∗ i ==
38 sum <m> i n NET: sum <5,m, n> i n RVC: xb [5 ,m, n]∗ net [m, 1] ;
39

40 subto spat4 : sum <4, i , j> i n RVC: xb [4 , i , j]∗ i ==
41 sum <m> i n NET: sum <5,m, n> i n RVC: xb [5 ,m, n]∗ net [m, 2] ;
42

43 # o b j e c t i v e f u n c t i o n
44 set OBJS := { <1>, <2>, <3> } ; # 1−cost , 2−t ime & 3−bandwidth
45 param CF[P∗OBJS] := read ” coe f f . dat ” as ”<1n ,2n> 3n ” comment ” # ” ;
46

47 minimize o b j e c t i v e : sum <p> i n P :
48 (sum <p , i , j> i n RVC: xb [p , i , j]∗ rvc [p , i , j , 1]∗CF[p , 1]
49 + sum <p , i , j> i n RVC: xb [p , i , j]∗ rvc [p , i , j , 2]∗CF[p , 2]
50 − sum <p , i , j> i n RVC: xb [p , i , j]∗ rvc [p , i , j , 3]∗CF[p , 3]) ;

Temporal Relationships. We require that the start times of part one (IBM p690) and part

two (PC cluster) must be equal (line 18). Also, the start times of part one and part three

(network IBM–PC) must be equal (line 20). The next constraint (line 22) requires that the SGI

visualization part begins exactly four hours after the computational parts begin (e.g., the IBM

part). The last temporal constraint (line 24) ensures that the network between the IBM and the

SGI is reserved from the same start time as the SGI part. Note, due to the fixed durations of all

parts we do not need to put constraints on the end times of the reservations.

16

Table 2: Parameters of the experimental evaluation.

Parameter Values

no. of resources 1,2,3,4,5,6,7,8,9,10,12,14,16,18,20

no. of candidates 7,12,23,34,67,133,265,397

corresponding time gap 11h,6h,3h,2h,1h,30m,15m,10m

Spatial Relationships. We assume a fully connected network with bi-directional links. Thus,

n resources (compute and visualization) are connected by n2 links. The network configura-

tion is initialized from line 27 to line 29. The actual spatial relationships are defined for the

network link between the IBM p690 part and the PC cluster (lines 31/32 and 34/35) and for

the network link between the IBM p690 part and the SGI visualization pipeline (lines 37/38

and 40/41). For the sake of simplicity, we use the number of a resource as its location identifier

(cf. multiplication with i on the left side of each comparison).

Objective Function. We use the weighted sum as global objective function (lines 47–50). It

aggregates three sub-objectives – minimum cost, minimum start time and maximum available

bandwidth. Because the value ranges of the metrics differ significantly (cost: 0-20000, start

time: 0-237600, bandwidth: 0-1000), we scale them by appropriate factors (the maximum of

each value range). These factors are the coefficients initialized in line 45.

6 Experimental Evaluation of the Scalability

Many optimization problems, in particular integer problems, suffer from a large search space.

We studied the impact of the number of eligible resources and the number of reservation candi-

dates on the time needed to find the optimal co-reservation candidate. In the absence of work-

load traces for co-reservations we randomly generated the reservation candidates (step �). For

each parameter pair (no. of resources, no. of candidates), we generated 10 experiments and

calculated the average time for finding the optimal co-reservation candidate. Table 2 lists the

parameters of all experiments, which were sequentially executed on a SUN Galaxy 4600 16

core system with 64 Gbytes of RAM. Each experiment used a single processor core only.

Fig. 2 shows the solving time against the number of reservation candidates. Each curve repre-

sents the experiments with a specific number of resources. Additionally, the graph shows two

approximations of the solving time. For the experiments with one resource, the solving time

increases exponentially with the number of candidates. For the experiments with 20 resources,

the solving time increases quadratically with the number of candidates.

Whether the solving time is acceptable in real world scenarios depends on several parameters.

First, a client may want a response as soon as possible. Second, the calculated future status (cf.

step �) may only be valid for a certain time. Thereafter, the “best” co-reservation candidate is

sub-optimal or reservation attempts (cf. step �) simply fail. Third, the longer the book-ahead

time (earliest start time) of the co-reservation is, the longer solving times may be acceptable.

17

The experimental results provide two means for limiting the solving time – (1) the GRS may

ask the resource providers for a limited number of reservation candidates and (2) use less

eligible resource than found through the resource information service query (cf. step �).

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

 397 265 13367 34 23127

s
o

lv
in

g
 t

im
e

 (
s
)

number of reservation candidates

time gap between reservation candidates

11h 6h 3h 2h 1h 30m 15m 10m

e

x

81

169

x
2

4
2

n
u

m
b

e
r

o
f

re
s
o

u
rc

e
s

1

2

3

4

5
6
7
8
9
10
12
14
16
18

20

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

 397 265 13367 34 23127

s
o

lv
in

g
 t

im
e

 (
s
)

number of reservation candidates

time gap between reservation candidates

11h 6h 3h 2h 1h 30m 15m 10m

e

x

81

169

x
2

4
2

n
u

m
b

e
r

o
f

re
s
o

u
rc

e
s

1

2

3

4

5
6
7
8
9
10
12
14
16
18

20

Figure 2: Solving time for several numbers of resources against the number of reservation candidates.

7 Conclusion

Resource allocation for complex applications requires guarantees to ensure desired quality-of-

service levels. Such guarantees are typically implemented by reserving the requested resources

in advance. We demonstrated an approach for specifying and processing co-reservation re-

quests. The requests are specified in a simple yet powerful language and transformed into

an integer program. Our approach is motivated by the observation, that finding the best co-

reservation is an optimization problem. The use of a mathematical programming language

makes extensions and refinements easy to implement. Moreover, there already exist well-

known tools for solving optimization problems described in such languages. Of course, that

flexibility comes at some cost namely the time needed to find a solution. The performance ex-

periments revealed means to limit the solving time, i.e., by limiting the number of reservation

candidates and/or by using less eligible resources. Nevertheless, the flexibility of the approach

facilitates many extensions such as specifying data dependencies and optimizing data transfers.

Also, moldable requests may be supported to optimize the utilization of the resources.

18

Acknowledgment

This work was supported by the German Federal Ministry of Education and Research within

the D-Grid initiative under contract 01AK804C and the European Network of Excellence Core-

GRID, Institute on Resource Management and Scheduling, under contract IST-2002-004265.

References

[FKL+99] I. Foster, C. Kesselman, C. Lee, R. Lindell, K. Nahrstedt, and A. Roy. A Distributed Re-
source Management Architecture that Supports Advance Reservations and Co-Allocation.
In Proceedings of the International Workshop on Quality of Service, pages 27–36. IEEE
Press: Piscataway, NJ, 1999.

[GAC07] AstroGrid-D project homepage. http://www.gac-grid.org/, November 2007.

[Koc04] Thorsten Koch. Rapid Mathematical Programming. PhD thesis, Technische Universität
Berlin, 2004. ZIB-Report 04-58.

[LF03] Chuang Liu and Ian Foster. A Constraint Language Approach to Grid Resource Selection.
Technical Report TR-2003-07, Department of Computer Science, University of Chicago,
March 2003.

[NLYW05] Vijay K. Naik, Chuang Liu, Lingyun Yang, and Jonathan Wagner. On-line Resource Match-
ing in a Heterogeneous Grid Environment. In Proceedings of the IEEE International Sym-
posium on Cluster computing and Grid 2005 (CCGrid05), Cardiff, Wales, UK, volume 2,
pages 607–614, May 2005.

[RLS98] Rajesh Raman, Miron Livny, and Marvin Solomon. Matchmaking: Distributed Resource
Management for High Throughput Computing. In Proceedings of the 7th IEEE International
Symposium on High Performance Distributed Computing, Chicago, Illinois, USA, pages
140–146. IEEE Computer Society Press, July 1998.

[RR05] Thomas Röblitz and Alexander Reinefeld. Co-Reservation with the Concept of Virtual Re-
sources. In Proceedings of the IEEE International Symposium on Cluster computing and
Grid 2005 (CCGrid05), Cardiff, Wales, UK, volume 1, pages 398–406, May 2005.

[RR06] Thomas Röblitz and Krzysztof Rzadca. On the Placement of Reservations into Job Sched-
ules. In Proceedings of the 12th International Euro-Par Conference 2006, Dresden, Ger-
many, pages 198–210, 2006.

[RSR06] Thomas Röblitz, Florian Schintke, and Alexander Reinefeld. Resource Reservations with
Fuzzy Requests. Concurrency and Computation: Practice and Experience, 18(13):1681–
1703, November 2006.

[WWZ05] Oliver Wäldrich, Philipp Wieder, and Wolfgang Ziegler. A Meta-scheduling Service for Co-
allocating Arbitrary Types of Resources. In Proceedings of the 6th International Conference
on Parallel Processing (PPAM 2005), Poznan, Poland, volume 1, pages 782–791, September
2005.

19

����������	
��	������������������������	
�����������
������������	���������

��������	��
���������������������
����������������
���������������
������������

���� � � ��!����������������
��� �"�#������� $ �����������%�&'�
()��*�����������+�����,�

������-�	��
�.	�/-���0"����������1.���-�"�-��
���� � � ��!������������� �������2�������3
����������� ��������������

()455������� ���6��
7�
���������+�����,
0�����-��������-��
�������-�����1.�	�-��"-��

�����	����8�� �������������
��������
 �
������� ���������������,��
������� �
������
��������� � ��� � ��� � ���7���, � �� � �����
7��� � ��� � �� � ��7�
,��� �
� � +����
������ ��� ����- � 8���
�� � ��� ������ �
� � ��7����� � �
�� � ���7� � � ���� � ��������
���� �
�� �
� �� � 7�
���� � �������� � ��������� � ��� � ������ � �� �������- � ����
�� ��
����
������ ������ �
� � ����
�
�����/��������������� ��
� ���7�
,������� ����
������������
�7� �������
������
�/�����+���������� ��� ����-������	
�"�7�
7
����
�� � ��� � 7�7�� � �
��� �
� � � ���/� ������� �/���� ���� ��� �������� � 7�
����� � �
� �+����
������ ��� ����-�����+����8�� ������ �
���������%+8�'����� �������/� ��� �
����,���
/� 	��������������������,������� ������ �
�� ����
�
����-�����+8����7����� ����
�����/�� � ��� ��/� �� � ����� �� ��� �	���� � �� �+8� �9��� � ��7����� � � � � �
�7� ����
��� ��-�����9��� � ��"��	� ���������� ���� ������ �
��7�
��� �������� ����
�7� ����
��� �������7�
��������� ���������������
������
�+8��:� ��:������-�#������
����
��;������
�7� �������
������ ��
����+8��:� ��:�������-������,� ���������������
������7����� ������ ���� � ��
�� ����� ��
����� ��/� ����
�7� ���<���/�������������
+����� �������-�

��������� �8�� ��� �������� �+��� �8�� ������ �
� ������� �+��� �=
�7� ��� ���/�
:������

�����������������

+�����
�7� ��������� �� ����>4?����
	������������������/������
������������������������
��� ��/� �� � �����
���� - � �� � �
� �
� � �� � ����� � ������ � ���
����� � ��� � �
�7� ��� � ����
�
��������
���������	��������
� 	������ ���� ����������� ������@7������ ��>5?�>A?-�B���
��
 ��������������
�����
�7� � �
����+������� ����
������� �
��
���
�7� �������
�������
��
��	�C
/�-��������� ��
� 	�����
������� �
������� �/����;�����D���	��
� 	����������
�/��
��� ������/��
����
�7� � �
��D� ������
������� �
����,�
���������,� ����	��������	�C
/�
������ ����
�7� �������
����-���� ����7�7������
� 	������,���+����8�� ������ �
���������
%+8�'���������
7���
������ ����
�7��@� ,�
���
������� �
�������+���������� ��� ��������
7�
����������
�������
�7� ���������
���� ��
��+���������-

20

��� �����	
� 	�!��

� � � � � �9�8�� ������������%8�'�������77
� ������������7�
�������
�����
�7�� ���,� ���
��7�������
�� ����/� ��� �
��������	�������� ������ �
��
�����-�� ��@��� ����
� 	������� ���
��������������� �����������	����� ��,����������
7���>(?-�:�������������,����� ���+����
�
�7� ��� � �������� � �
����� , � ��
	� � �� ���� � �
� � ��� ��� � �������� � ��� � ��� ����
�����
���� �-����� ,7�����8�� �������������
��
��%8��'�
���,7�����
���� �7����������
E���8���>*?�8�	����������F�:E��������>G?�����#�����
�������@�>�H?-������������
����������/����� ���
�� ������ ������ �
�� �����;������� ����
��
	������7�� �<

%�' B������������� �
���������
���� �
�
#������������� �������
��������� ������������	���������7�
��������
������
���
���� � ���
�� �
� � �
� � ����� � �-�- � B: � ���
�, � �
����- � �,����� � ��
�����
��� �� �� �
�������
������� �
��
����� �������������
����� �����7�/��� ,�
������,�
����;���"�,���7�
�������� �������������	� ����7���
���������7�
����-

%�' I���
���������
�� �
�
8�� ��� ��������� � ��� � ������ �� � �� � 7���
������ � �
� � ����� � ��� � �77���� �
��-�
#���� �
� � ��� ��� �������� � �
��� � �@7�� � � � ������ �� � �
�7� ��� � �����
���� �
	�������������
������������ �7��6������
�7� �����������-

%4' ���,����������
B� � �� ��
� ���,�
� � ���� �
��� ��
�7� ���� ���
����� ����������� 7��������� �����
���� ����
����� ����������������������
	�����
������@�/��� ,-�9�
 ������ ���� ����
��� ����
����� ��������������� �� �8������/�������,����7��������������� ���
�

 �����
� �-

��" ����������	
��	��������

� � � � � �������� ������������/�����+�����,� �������������� ��
����
����
� �������
������
��� ������������ ����
�
��������	�������7�
����������� �������-��
������ ��������
7��� �

������������� ��� ������ ������7
� �� �
<

%�' ��7����� ���� ������������7�
����������� ������������
���
%�' ���7���, � �� � ������ �
 � ��� ��� � �������� � 7�
����� � /, � �
�7� �� � ��� ��� �	� ��

� ���������������
�������������� ������������
%4' /�������������� ��� ���� �� �����7�
�������� ���������������
�����,��
�7� ���

��� ���-
� � � � � �����������������7����� � ���+����8�� ������ �
���������
�������� � ����
���
����

/C�� ����-�+8����7����� ������/���������/������/� ��� �
����,���������������������� �

����� �������������7�
������/,��� ��
����
���8�����
�� ��������� ��/� ����
�7� ����
��� ���-����
��� �
��7�
�������
������� ����������������� ���� �����������+�#��:������
>�*?-�������� �
�� ���7�7������
�������������
��
	�<����� ���	
�"��������� ��� ������:�� �
��
�D�:�� �
��4�������/��� �������� �� ����
�� ���+����8�� ������ �
��������D����:�� �
��5�
+8�������������������������D � ��� � �� � �
��
	���/,���������7 �
��
� � ��7����� � �
�� ���
:�� �
��AD� ���7�7����
�����������:�� �
��)�	� ����/�����������,������� ����	
�"-

21

" ��
	����#��$

����8�6:�
7���� ��������������������� ��,� ���>�4?�������
���@��7������ �����68��
�
:,� ���>�5? � �� �����/� ��� �
������� � �
� ���� ��� ����������
��
��- ���������� �� �������
������� � 	� � �
�� � 	
�"< � 8�6:�
7 � �� � �
����7
���� �
 � �� � +8� � :� � � :������ � 	�����
8�I��� ���
����/���
�7�����	� �� ���+8��9��� �-�������� �� �� �
��7�
��������/�����
��
��
�������"����� ���+8�-�&
	����������7��/������
������������
���7����� �8�������� �
��"��� ����� ��
7���/��� ,�	� ���@�� ����+�����,� �����
����������� -���������� �� �
���
+8����7����� � �
������
��������/����������@�/��-�
� �����:B�9�>�)?�7�
C�� ���
��#������� ,�
�������
��������:������6B�6������������ �� ����
�
� � �77���� �
� � ������� � �
� ��� � � ��� , � 7�� �
���- � ��� � ���������� � /� 	��� � �� � +8��
�77�
�������� ���:B�9������ �� ������� �� �:B�9�7�
�������
������������ �������������
 �� � ��� � 7���
�������� � ��� � ���� �
 � ������ � �������� � �� ��� � ��� � 7�
������ � ���@�/�,�
���
�������/������ ��������������
���
�7� � �
���� ��"�-�
������=��� ���
���������%=B�'�7�
C�� �>�A?�
����"��#������� ,���������
�� ������
�����
��������� ������	
�"� �� ����/������7���
�6 ��6��,�7�� � �
�����
����7�,���������� ����
��
���� �7�������7����� ���� �������� ���-�����7�
��������� �������� ���������
���������
7�� � �
���
����7�,���������� ��-�:
�������	�����
 ������ ���/����� ��7�
������/,��������
��� �������������/�������� �������� ��-
� � �� ��+8���������� ����� ��
7���/��� ,�/,���������/���������
�7�
�������� �������������
��� � ������/��� � 8�� � 	� � � +�#� � :�����- ���� � +�#� � %+��� � ��/
��
�, � #���
���
�����
���� '��������>�*?���7����� ������/� ��� ��
�����
��+�������
������������77�����

��
���� ���������� �� �����/�������/,����
��� �
�����������	� ����+����-�����+�#��
����������	����,���������7�
��� �
��+����-�����������,���������
�� ���������� �����
���
���
�7�
�����������
��� �
���
���� �� �����/�������
��@�������7������
�����
��� �
��
��
����������� �"�
	�������
������������� ����
������� �
��-�

% &!�����!����������������������	
��	���������

��� � +��� � 8�� ������ �
� � ������ � �� � � � �
� 	��� � ��,�� � /� 	��� � ����
�� � ��� ������ �
��
��7����� � �
����
�7� ������� ��������+���������-�#�����������;�����������7�
,���� ����
���������������������� �������
��+8�-�+8�� ��"��	� ��������,�����
�7� ������� ��������
8��� � �
� � ��� ��� �������� �
7��� �
��- � =
�7� �� � ��� ��� � �
��� � ���
 � 7�
���� � ��� ����
���������
��
���+���������� ��� ���-������������� ������ �
�� ����
�
�,���,����������
��

����
�7� ������� ���
���
 ����%�-��8����������E�J� ����
�
����'-�����+8�� ����
7�
��������� ���������������
����������
���� �����
�7� �������
�����-

%�� �����	
� 	�!���'	������������	���������

� ����������@��7����������
�
����� ������������/�����+�����
�7� �����,� ��������
	�����
3��-��-������,� ����
� �������� �7����
�7� ������� ����%�
�7� ������ ��'-��������� ���
������������������
� �������
������	�����8����������� ������7�
�������� ������������
���
�����-

22

(��������8�� ������������/�����+���������� ��� ���

%�" �������!���������

��� � +8� � �� � � � ������������ � �,� �� � �� � �������� � ������� � �
�7
��� � � %3��- � �'�
�
����7
���� �
� ���8��/�����+���������� ��� ����%3��-��-'<

+8��:� ��:�������
����+8��:� ��:���������������
�� ����������7
�� �
�� ����
�7� ������� ��-�� �
���������
� �������
������������� ������ ��������
������� ��	� ��+8������ ��
 �� � ����
�� ����
� ���� ���
�����- �#���� �	�
�	�� �
 �/���� �+�����
�7� ����
�,� ���	� ����� ��/� ������ ��������������������������� �7���+8��:� ��:��������
�
����� ����������������7��� �
��-�
+8��9��� �
����+8��9��� ��������/���������	����������
���
� �������
�����-�� ����������

7��� �
���
���������
��+8��:� ��:����������� ��"��	� �� ����7�������8���
 �� � �� � ��� ����� �
� � �� � �
� ��� � ���
����- ����� � +8� � ���� � �� � ��� ������ �
��
 ����
�
�,���7����� -����
 ����	
����
������� ,7��
��8���	�������
�7��7����
���
����7
���� �+8��9��� -��
#�������
��� �
���� �/���
����#�������
��� �
���� �/�������
������������� �7
���,��
��������������
�
 ������ �������������������� ����
�7� ������� ��-
8�� ���������������"��� �/���

23

8�� ���������������"��� �/�����
���� ,7�������� �������"�������������
� 	����
7��"���� � 	���� � ��� � ������ � � � �� � ���� �
� �
� � ��� ��� � �������� � ����
���
���� �
��
��������@��� �
�������
���� -

��������	
����������

� ��� �� ����	
��	��� ����� ��	� �����

� ��� �� ���
� ���� ���� ��� ��� �� ������� ���

� �������	
��� �������

�� �������� ��	 ����

!

!

!

!

!

!

"������ #����������

$�������

"������ #���� �������� �� ���

�� ����� ��� ��	 ����

!

!

!

!

����������

���������� ������� ���

� ���
� ��%��� ����%����� ��&'�()��%��*�)"%+),,,-

� ���
� ��

% ��� �����

$ �������

� ���
� ��

% ��� �����

.��	�� ���

�$�������

!

!

������� ���

���������� ����� �� ���

� ���
� ��% ��� ����% ����� ��&'�()��%��*�)"%+),,,-

� ���
� ��% ��� �����

$ �������

� ���
� ��%��� �����

.�� 	�� ���

�$�������

(����"������ ��/� �
����������
�� ���+8��	� ��9��� ��7���������-

� � � � � �������� ��/� ���7�������������
�������� ���+����8�� ������ �
�����������"��� ���
:,� ��������/�� � �����@ ����/��- �9��� � ���� �/� �7������ � �� �� � ��� ������� ����� ������
��� �7���+8��:� ��:������������� ���
���,- �+8��:� ��:���������������������� �
�� ���
+8��9��� -�
� � � � � �9�
 ������7
� �� �"�,���� ����
�� �������� �� ������� �������
����/���������>�?�
�
7�
����� ������� �
���� ����������-���/����������������� �/�������� ���������77
� ���/,�
���,� ����
�
�,�����
��-���������
����/������������7������� ����� ���� �
��
�� ���+8��
������ ��/� ��������� ��� ����-

24

)���*���+	�����������������	
��	���������

(����%��#���=������������
�� ���+����8�� ������ �
��������-

������������ ����������������
��+8��������
	�����3��-�4-����������
���@��7��<
 �����
��<�

� ����+����=
�7� ����:,� ���%+=:'�
�� ��������	�
�	�� �
�/�����+����
������ ��� �������� ��������9�
����� ������������-�� ���� ���
���	�����
��;��� ����� ������������� ���� ���-�

� ����#�������
��� �
���� �/������ � �����
��	�����7���
�������� � ,�
����"���������
��������
�� �
���
� �
�-�

� ��� � ������� ��
� � �� � ��
 ��� � ��
� �
� � �� � +8� � ��� � ����- � ����
������� ��
����,���������+8���� �������� ����-�

 ���#���=�����
� 2�;��� �8������2�;��� �8������ 	
����������� �
���
�� ���2�;��� �

8�� ��������������������-�
� ������ � 8� � �� � �������� � �� � �� � +=: � ����� �
 � 7���
�� � �
���

��������� � ��"��
����8�-
� 2�������8����� ���������������
�7� � �
���� ��"�
����8����� ������ ���

����� ��� �������� ����
�� ����
�� �������
����8��������7���-
� �������+8����� ���������/,����������� ��
��	�
�	�� ��
��������

������ ,��� �����
��7���������	�+8��=
�7
��� �-
� =
�7� ��9��
��/���2��
��������� ���������	����+8��	�� ��
��
� �
��

�������	�8������/�����
�� ���
� �������-

25

� =���"����� � ,���� ���������
��� ��� ��� �������-

, &!���-.
�-��	����������

��� � +8� � �� � ��7����� �� � �� � �� � 7�
C�� � ��� � � � K� � � �����
� �
� � �� � +8� � �
	 � ���

7��� �
���-������
��
	���� ����
�
���������������
�� �����7����� � �
�<�

���� �9I� � �
� � E��6��/ � :������� � ����
�
�, � %�9E6�:'< � 7�
���� �

�� � ����
��/������������
������� ������� ��������������� ���� ���
����/��������-
�����E���K������� ����
�
�,<�#����
�/�����7�������E���:������
�C������ ��
 ,7�-
&�/���� ��4-H< �I�
�������/��������
��
/C�� ����� �
������77�������� ������ �
��
������ ,-
97������
��� ���������:����� �=
� �����-
���,�
 ������/��������
�� ���97�����:
� 	�����
���� �
�-

,�� ���������/������

����+8��9��� ���/������������������/��������/�:�������������7 �
�����������%�:��'�
���������� �����
������=������"���
�-�3��-5���
	�� ���#�����������
�� ���+8��9��� �
�� ������ � ������ �� � ��
� � �:��- � J
	 � +8� �9��� � ��� � /��� � ��7����� �� � �
� � ���
8�������:E�:�����-�����8�������:E�:������7�
����������/����������� �����������
�
� 	������ ���� ���
��8����������� -�B�����7
� �� � ��"���� ���9��� ���7����� � �
��
���
�
��������8�����
��� �
��
�� ����:E�:�������� �+�#��:������>�*?-���� ���#���
����������7����� ������3��-�5� �������	
�������������
����7
���� �
� ���+�#��:������
����������� -

,�" �����	
� 	�!���0	�	�	��

������� �����
�������
�� ���9��� �
��
����������
��� �
���
���� ����/
� ���� ����������������
 ����� �/���������� ���8���� �������,�������-�-��I�9�������������/������
�,-�&
	�����
 ���9��� �����
����� ��,��������� ������������
��
� �
��� ��+8������ ��������,���<���8��
�
����/������D�� ��
����/�����������
��/����;������/,�������-�� ���� �����
�����������,�
�
�
��� ���� � ��
������,�8�-�3��-A���
	�� ����� �������
� ����� �/���-�����,���;��� ���� �

� ������� ��������������������� ���� � ��
������������
������� ����� �/����������������
-
� �����9����������
�
/C�� ���������
������ ���� � ��
����8�-�� ��������
�/�������
��� ������
 �� � ���� �	���� � ������ �, �
	�� � �� �8�- �9 ����������
�
/C�� � ������/�� � � � +8�� :� ��
:������-�� ��
� ������
�������+8��:� ��:������� ���
 �����
�� �
�����
����� �� �����/����
���� ���
�� -������� ��������������
�����
��������
�� �
��7
���,-�������7����� � �
���
���
�
 ���"����,����
�������� ��� �
���
����;��� ����+8��:� ��:������-������� ��7�
���������
��7����� ������:L��/,���������������������
/C�� ����� �
������77������/������-

26

(����)������+8��9��� ��� �����������

,�%�������/����/������

����,�8����;��� ���� �
� ���+8��:� ��:������������������/,���	�,����� �������� �����-�
����� � ��
�� ���C
/�������
��
����������� �/�������������� ��7�
��������7����� ���	� ��
��/���� ��
/C�� ����� �
������77����%3��-�A'-��������7����� � �
�������������� ,�7
���,�
/�����
����������F����������� ��� ��� �
�-�����
 �����
�� �
��8�����
�,����������
���������
��������
�� ���
������������
������� ����� �/���-������,� ����
� �
�������,�
��;��� ���� �����@��������� �����������-�����
 �����
�� �
��8�������@���
�/� ���������-�
������@�������
�� �
����������
�,�
����������� ���&�������"������@���
���������-
� � � � � �����+8��������� ��
��������
��@7���� �,������ �����	����� ��
� ���+8�-�3
��
������ �
� � 7��7
�� � � � ��/ � �� ������ � �
� � �� � ������� �� �
� �
� � �� � +8� � ��� � /����
��7����� ��-�������/�������� �� �
���� �������%3��-�)'����/��� �
� �� �8����;���� �
��
������������� ����� �
���� ,-

27

(����,��9��� ��� ��7�
�����

(����1�����/��� �������
��+8��������� �� �
��

28

1���+��
�����	������������$�

��� ����7�7���	��7����� � ���	
�"�
��+����8�� �����������%+8�'-�+8��������
� 	������,���
	�������������/� 	������������������
���8����7����� � �
��-�+8��7�
��������� �������
��/����������� ��������
� �������
�����7��� ����� ��� ������������
����� � ������ ���
�
�
�����+�����
�7� �����,� ��-�����+8����
7 ���������/������ ��/� �������� �� ����	�����
�������7���7�
,������/����������/��������������� �+���������� ��� ����-�#����� �����
���
���������������,��������
�������
�7� ���������
���� -��
������+8��������
��
����	
�"�����	����/�������
7���������7�
,�������6+����>�G?� �� �/���
��� � /� � ��� ��� � ������ �� � 	� � � �
�� � ,7���� � +��� � 	
�"��
	 � �77���� �
�� � �-�- � =�:�
/�������"�����7�
 ������������ ��77���� �
�-�

����������

������������-��������� �-�:������6
���� ��� ��9���� �� ������� ���/�:������-
�����������B7���+����3
���-�+�#��:������:7������� �
�������
���-��3�����:7������� �
�-�
4 �-�3
� ������ ���� ���+���M�9�������I
�� �=���"��� -�����������2�7
� -�9��
����J� �
����

��/
��
�,�N�#������� ,�
��=�����
-�
5 �- �3
� �� �����=- ����������- �����+���<�K���7��� ��
��� ���	��
�7� ���������� ��� ����

�
���������������GG*-�
A �-�3
� �������=-����������-�����+���<�K���7��� ��
������	��
�7� ���������� ��� ��������

��� �
���
���������������HH4-�
) �-�������-������-����
��� �
�� ��������
����� ��� ���������7

������ ����� �������
�

8�:�	
�"��
	��,� ��-��J=:�8
�-�5*A5��HH(�2������3�����-
(�-��-�:�� ��2-�J���- �8�� ������������<������ ����7�� �
�����
���,� ��������7�
������-�

�
�������������I�/������-�
* I-�K������� �-�E������� ���9� �
��8�� ������ �
�-����I�
�-�
�� ����G ��9=��:,�7-�
��

B7��� ����:,� ����I�����7����77-��)5O�((�J�	�P
�"�#:9�B� �HH4-�9=��I����-
G����������8�	������� ������ �
��7�
��� �-�� 7<FF			-��	���-�
�-

�����H��������#�����
�������@-�� 7<FF����6�
������@-�
�����
���-�� -�
�� 2-�3��������
�I-������������-�3
� ��-�9�=�����
��+����=
�7� ����
��8�� ������������-�

���I�
�-�
�� ����4����� Q��=
��-�
����� ��/� ���=
�7� ����:,� ���-��HH4-�
�� �-������,��-��
�����������- �3
� ��-�3�
��:���/
@�
�I��,��
���<��,������8�� ����

�����
���� ����� ���+���-����I�
�-�
�� ���A ���� Q���
�"��
7����+����=
�7� ���-��HH5-
�4��������8�6:�
7�I�
C�� -�� 7<FF			-����-���-���FR�������,F����
7F
�5 :-�9��/����� �-�3�
��8�� ��������2��
������
�8�� ����=
�7� ����+����<� �����68�+B�

:,� ��-�3� ����+����� �
��=
�7� ���:,� ������%)'<*G)OGHG�������HHA-�
�A �-�=���� ��-��-��	��������-��-+�� ��- ��-�

�� �����:-��-:7���"��-��,������8�� ����

=��� ���������+����:� ������������I�
�-�
�� ����� ��������� Q��:,�7-�&����I���
�������
��� ��/� ���=
�7� ����������HH4-

�) E-������������-�E�-�:B�9<���:������6
�6�������9���� �� �����
��977���� �
��:�������
&
� ��� �# ��� , �I�� �
��� � �� �I�
�- �
� � �� � �� �� ���� � �� Q� � :,�7- �&��� �I���
�������
��� ��/� ���=
�7� ����:�� ����9�������HH4-

�(=-�:�7�� ��"���� �-�8�� ����977���������
����7�
,������������ �������:
� 	�������I�
�-�

�� ����(��=
��-�
����������� ���� �
��:,� ����9������ �� �
�-�77-��*�6�G5��HH4-�

�*��������B7���+����3
����+�#����������
�"����+�
�7-�+�#��:��������-4����-��HH)-
�G���������6+������� �� ���-�� 7<FF			-�6����-��F

29

High Performance Multigrid on Current Large Scale
Parallel Computers

Tobias Gradl, Ulrich Rüde

Lehrstuhl für Systemsimulation

Friedrich-Alexander-Universität Erlangen-Nürnberg

Cauerstr. 6

D-91058 Erlangen

tobias.gradl@informatik.uni-erlangen.de

ulrich.ruede@informatik.uni-erlangen.de

Abstract: Making multigrid algorithms run efficiently on large parallel computers is
a challenge. Without clever data structures the communication overhead will lead to
an unacceptable performance drop when using thousands of processors. We show that
with a good implementation it is possible to solve a linear system with 1011 unknowns
in about 1.5 minutes on almost 10,000 processors. The data structures also allow for
efficient adaptive mesh refinement, opening a wide range of applications to our solver.

1 Introduction

In the most recent TOP-500 list, published in November 2007, HLRB II at the Leibniz

Computing Center of the Bavarian Academy of Sciences is ranked at position 15 for solv-

ing a linear system with 1.58 million unknowns at a rate of 56.5 Teraflops in the Linpack

benchmark. However, this impressive result is of little direct value for scientific appli-

cations. There are few real life problems that could profit from the solution of a general

dense system of equations of such a size. The test problem reported in this article is a finite

element discretization on tetrahedral 3D finite elements for a linear, scalar, elliptic partial

differential equation (PDE) in 3D, as it could be used as a building block in numerous

more advanced applications. We have selected this problem, since it has a wide range of

applications, and also, because it is an excellent test example for any high performance

computer architecture. Our tests on HLRB II show that this computer is well suited and

yields high performance also for this type of application.

HLRB II, an SGI-Altix system, went into operation in September 2006 with 4096 pro-

cessors and an aggregate main memory of 17.5 Terabytes (“phase 1”). In April 2007, the

system was upgraded to 9728 cores and 39 Terabytes of main memory (“phase 2”). In

particular in terms of available main memory, it is currently one of the largest computers

in the world. Though HLRB II is a general purpose supercomputer, it is especially well

suited for finite element problems, since it has a large main memory and a high bandwidth.

With our article we would like to demonstrate the extraordinary power of today’s comput-

30

Figure 1: Regular refinement example for a two-dimensional input grid. Beginning with the input
grid on the left, each successive level of refinement creates a new grid that has a larger number of
interior points with structured couplings.

ers for solving finite element problems, but also which algorithmic choices and implemen-

tation techniques are necessary to exploit these systems to their full potential.

2 Hierarchical Hybrid Grids

In this article we focus on multigrid algorithms [BHM00, TOS01], since these provide

mathematically the most efficient solvers for systems originating from elliptic PDEs. Since

multigrid algorithms rely on using a hierarchy of coarser grids, clever data structures must

be used and the parallel implementation must be designed carefully so that the communi-

cation overhead remains minimal. This is not easy, but our results below will demonstrate

excellent performance on solving linear systems with up to 3× 1011 unknowns and for up

to almost 10,000 processors.

HHG (“Hierarchical Hybrid Grids”) [BGHR06, BHR05] is a framework for the multigrid

solution for finite element (FE) problems. FE methods are often preferred for solving ellip-

tic PDEs, since they permit flexible, unstructured meshes. Among the multigrid methods,

algebraic multigrid [Mei06] also supports unstructured grids automatically. Geometric

multigrid, in contrast, relies on a given hierarchy of nested grids. On the other hand,

geometric multigrid achieves a significantly higher performance in terms of unknowns

computed per second than algebraic multigrid.

HHG is designed to close this gap between FE flexibility and geometric multigrid perfor-

mance by using a compromise between structured and unstructured grids: a coarse input

FE mesh is organized into the grid primitives vertices, edges, faces, and volumes that are

then refined in a structured way, as indicated in fig 1. This approach preserves the flex-

ibility of unstructured meshes, while the regular internal structure allows for an efficient

implementation on current computer architectures, especially on parallel computers.

The grid decomposition into the primitives allows each group of primitive to be treated

separately during the discretization and solver phases of the simulation, so that the struc-

ture of the grid can be exploited. For example, instead of explicitly assembling a global

stiffness matrix for the finite element discretization element by element, we can define it

implicitly using stencils. If the material parameters are constant within an element, the

stencil for each element primitive is constant for all unknowns interior to it for a given

31

level of refinement. Then, of course, only one stencil has to be stored in memory for each

level of that element, which is the main reason for HHG’s memory efficiency and high

execution speed.

3 Parallelization

To exploit high end computers, the programs must be parallelized using message passing.

For an overview of parallel multigrid algorithms see [HKMR06] The HHG framework is

an ideal starting point for this, since the mesh partitioning can be essentially accomplished

on the level of the coarse input grid, that is, with a grid size that can still be handled

efficiently by standard mesh partitioning software like Metis1. In order to avoid excessive

latency, the algorithmic details and the communication must be designed carefully. The

multigrid solver uses a Gauß-Seidel smoother that traverses the grid points in the order

of the primitives of the coarse input mesh: first, all vertices are smoothed, then all edges,

and so on. During the update of any such group, no parallel communication is performed.

Instead, data needed in the same iteration by neighbors of higher dimension is sent after

the update of a group in one large message per communication partner; data needed by

neighbors of lower dimension in the next iteration can even be gathered from all groups

and sent altogether at the end of the iteration (see fig 2).

This procedure minimizes the number of messages that have to be sent, and thus greatly

reduces communication latency. At the same time, it guarantees an important prerequisite

of the Gauß-Seidel algorithm: because primitives within a group are never connected to

each other directly, but only to primitives of other groups, all neighbors’ most recent values

are already available when a grid point is updated. For example, faces are only connected

to other faces via vertices, edges or volumes, no communication is necessary during the

smoothing of the faces. This strategy only goes wrong near the corners of triangles, where

edges directly depend on each other (see fig 3). Here the values from the previous iteration

are used, giving the smoother Jacobi characteristics at the affected points. Numerically,

this leads to only a slight deterioration of the convergence rates, but the gain in execution

time more than outweighs this effect.

4 World record in linear system solving

In our largest computation to date, we have used 9170 cores of HLRB II and HHG to solve

a finite element problem with 307 billion unknowns in 93 seconds run time. We believe

that this is the largest finite element system that has been solved to date. Additionally, we

point out that the absolute times to solution are still fast enough to leave room for using

this solver as a building block in e. g. a time stepping scheme.

The results in Table 1 show the results of a scaling experiment from 4 to 9170 compute

1http://glaros.dtc.umn.edu/gkhome/views/metis

32

Figure 2: HHG grouping of communication Figure 3: HHG communication and ig-
nored dependencies

smooth vertices

smooth edges

edg
fac
vol

vert

fac
voledg

vol
fac
edg

fac
edg
vert

smooth volumes

fac vol

smooth faces

cores. The amount of memory per core is kept constant and the problem size is chosen to

fill as much of the available memory as possible, which is commonly referred to as weak
scaling experiment. If the program were perfectly scalable, the time per V cycle would

stay constant throughout the table, because the ratio of problem size (i. e. workload) ver-

sus number of cores (i. e. compute power) stays constant. Near perfect scaling is seen as

measure of the quality of an algorithm and its implementation. For HLRB II in installa-

tion phase 2, the computation time increases by only 20% when scaling from 4 to 9170

cores. This is still not perfect but in our view acceptable, especially when compared to

other algorithms and especially in terms of the absolute compute time. Note that perfect

scalability is the more difficult to achieve the faster a code is. The shorter the time spent

in actual calculations is, the larger is the fraction of the time spent in communication, and

the more pronounced are the communication overheads introduced by the scaling.

Phase 1 of HLRB II used single-core processors, providing every core with its own mem-

ory and network interface. The dual-core configuration of phase 2 provides less band-

width per core, since two cores must now share an interface. Additionally, a part of the

installation is now configured as so-called “high density partitions” where two dual-core

processors share one interface, which means there is even less bandwidth available per

core. Benchmark results including these high density partitions are marked with an aster-

isk in table 1. HHG is highly sensitive to the available memory bandwidth. The timings

for 64, 504, and 2040 cores show that the dual-core processors of phase 2 account for ap-

proximately 39% deterioration in runtime compared to phase 1; compare this to the 20%

of efficiency lost through scaling over the whole computer. The same effect is observed

when switching between the regular and the high density partitions of phase 2. While one

V cycle takes only 6.33 s on 6120 cores of the regular partitions, on the high density parti-

tions the runtime is already 7.06 s on just 128 cores but then increases only slightly further

to 7.75 s for our largest runs.

33

Table 1: Scaleup results for HHG. With a convergence rate of 0.3, 12 V cycles are necessary to
reduce the starting residual by a factor of 10−6. The entries marked with * correspond to runs on (or
including) high density partitions with reduced memory bandwidth per core.

Processors # Unknowns Time per V cycle (s) Time to solution (s)

Phase 1 Phase 2 Phase 1 Phase 2

4 134.2 3.16 6.38 * 37.9 76.6 *

8 268.4 3.27 6.67 * 39.3 80.0 *

16 536.9 3.35 6.75 * 40.3 81.0 *

32 1 073.7 3.38 6.80 * 40.6 81.6 *

64 2 147.5 3.53 4.93 42.3 59.2

128 4 295.0 3.60 7.06 * 43.2 84.7 *

252 8 455.7 3.87 7.39 * 46.4 88.7 *

504 16 911.4 3.96 5.44 47.6 65.3

2040 68 451.0 4.92 5.60 59.0 67.2

3825 128 345.7 6.90 82.8

4080 136 902.1 5.68 68.2

6120 205 353.1 6.33 76.0

8152 273 535.7 7.43 * 89.2 *

9170 307 694.1 7.75 * 93.0 *

5 Parallel Adaptive Grid Refinement

The paradigm of splitting the grid into its primitives (vertices, edges, faces, and volumes)

and the technique of regular refinement also prove valuable when implementing adaptivity.

Our remarks on this topic divide the refinement methods into two groups, those which

create conforming grids, and those which do not. For an exact definition of the term

conforming grid see [Rüd93b]; in short it means that all grid nodes lie only at the ends

of edges and at the boundaries of faces. Techniques like red-green refinement [BSW83]

create conforming grids and are widely used, because they are numerically unproblematic.

The other group of techniques creates non-conforming grids with hanging nodes which

are often considered numerically unpleasant. Yet the implementation of such a technique

is especially straightforward in HHG, that is why we show how to treat the hanging nodes

correctly so they do not pose a problem.

For more details we refer to an introductory article about multigrid on adaptively refined

grids, with many links to related work, by Bastian and Wieners [BW06]. A paper by Lang

and Wittum describes the building blocks of a parallel adaptive multigrid solver in detail

[LW05].

34

Figure 4: Grid originating from
two triangles, the lower one refined
once, the upper one refined twice.
The hanging nodes are encircled.

Figure 5: Two quadrilaterals, the left one with one level of
refinement. For evaluating the stencil at vertex V, the values
at the grid points G and H have to be interpolated.

V
G

H

5.1 Refinement with Hanging Nodes

In HHG, adaptive refinement can simply be achieved by allowing the coarse grid elements

to be refined to different levels, with the effect of having a non-conforming grid with

hanging nodes at the interfaces between elements. Figure 4 shows a non-conforming grid

consisting of two triangles refined to different levels.

In HHG, a grid primitive is always refined to the finest level of all adjacent primitives of

higher dimension. This ensures that the primitives of highest dimension (faces in 2D, vol-

umes in 3D), comprising the largest part of the unknowns, are all surrounded by primitives

with at least the same refinement level. Thus, they do not need any special care and can be

treated without performance penalties.

An interface primitive sitting between two primitives with different levels of refinement

(vertex V in fig 5) sets up its stencils just as if all adjacent primitives were refined to the

finest level, with the effect that some grid points referred to by the stencils do not exist

(points G and H in fig 5). These points are interpolated from points on the finest available

level on their primitives. The interpolation rules—crucial for the numerical stability of

the algorithm—can be derived easily by interpreting the problem from the viewpoint of

hierarchical bases (see e. g. [Rüd93a]), with the hierarchical surplus defined to be zero on

the non-existent levels.

5.2 Red-Green Refinement

The two basic rules used in red-green refinement are shown in fig 6 and explained in detail

in [BSW83]. The red rule is identical to the one we use in our regular refinements (cf.

fig 1): a triangle, for example, is refined into four new triangles by connecting its edge

midpoints with new edges.. The resulting hanging nodes are taken care of by applying

35

Figure 6: The middle tri-
angle is red-refined and in-
duces green refinement in
the other elements.

Figure 7: Red-green refinement of an already regularly refined
mesh. (a) The initial mesh consists of four triangles, each refined
regularly two times. (b) Red refinement in the upper right triangle
induces green refinement in the upper and lower left triangles.

(a) (b)

the green rule to each affected neighboring element: the element is split into two or more

new elements by connecting the hanging node with one or more of the element’s already

existing corner nodes.

Red-green refinement can also be applied to already regularly refined elements as they

occur in HHG, which is illustrated in fig 7. The refinement can—and should—be applied

at the level of the coarse input grid. Then, thanks to the small number of elements in the

input grid, its application is very cheap, and all the tools developed for these methods can

be used. Furthermore, the regular internal grid structure of the input elements, responsible

for HHG’s high performance, is not harmed.

The upper right triangle in fig 7 with three interior points is split into four new triangles

with three interior points each, doubling the grid resolution in this region. The structured

interiors after refinement can be initialized in a natural and efficient way from the struc-

tured interiors before refinement. Some of the new grid points have the same location as

old grid points, values at these points are simply inherited from the old grid. The values

at the grid points in between are obtained by linear interpolation. The same applies to the

neighboring triangles that have to be green-refined.

36

5.3 Combining Both Approaches

While each of the methods can alone be used to implement adaptive refinement, we pose

that combining both results in additional advantages. Being able to do red-green refine-

ment as well as structured refinement with varying levels, we can trade the advantages and

disadvantages of both methods to obtain an optimal compromise between adaptivity and

performance.

If there are not many geometrical features that have to be resolved in the domain, the initial

HHG mesh can be very coarse. If it turns out during the solution process that the mesh

has to be refined in some area, one or more of the very large coarse grid elements have to

be refined regularly, leading to a fine mesh resolution also in areas where it is not needed.

The solution to this problem is to red-green-refine the initial coarse mesh.

A disadvantage of red-green refinement is that it does not necessarily preserve the element

type. A green refinement step turns a quadrilateral element into triangles (cf. fig 6). So, if

purely quadrilateral/hexahedral meshes are desired, red-green refinement cannot be used.

One of the goals when setting up a simulation for HHG is to have as few coarse grid

elements as possible, because then the structured areas are large and can be treated with

high performance. Refinement with hanging nodes creates less coarse grid elements than

red-green refinement and should thus be used whenever possible.

6 Conclusions and Outlook

The HHG framework and HLRB II have been used to solve a finite element problem of

world-record size. HHG draws its power from using a multigrid solver that is especially

designed and carefully optimized for current, massively parallel high performance archi-

tectures. The SGI Altix architecture is found to be well-suited for large scale iterative FE

solvers. While the parallel scalability is already good, there is still room for improvement

which we will exploit by further optimizing the communication patterns. The future will

also bring comparative studies on other architectures, for example the IBM BlueGene.

Adaptive refinement will enable us to conquer a wider range of applications than before.

Acknowledgments

We would like to point out that it was Benjamin K. Bergen who brought the idea of HHG

to life within his Ph.D. thesis [Ber06]. The initial phase of the project was funded by

the KONWIHR supercomputing research consortium2. The ongoing research on HHG is

funded by the international doctorate program “Identification, Optimization and Control

with Applications in Modern Technologies” within the Elite Network of Bavaria3.

2http://konwihr.in.tum.de/
3http://www2.am.uni-erlangen.de/elitenetzwerk-optimierung

37

References

[Ber06] B. Bergen. Hierarchical Hybrid Grids: Data Structures and Core Algorithms for Effi-
cient Finite Element Simulations on Supercomputers, volume 14 of Advances in Simu-
lation. SCS Europe, July 2006.

[BGHR06] B. Bergen, T. Gradl, F. Hülsemann, and U. Rüde. A Massively Parallel Multigrid
Method for Finite Elements. Computing in Science & Engineering, 8:56–62, November
2006.

[BHM00] W.L. Briggs, V.E. Henson, and S.F. McCormick. A Multigrid Tutorial. SIAM, 2.
edition, 2000.

[BHR05] B. Bergen, F. Hülsemann, and U. Rüde. Is 1.7 × 1010 Unknowns the Largest Finite
Element System that Can Be Solved Today? In SC ’05: Proceedings of the 2005
ACM/IEEE conference on Supercomputing, page 5. IEEE Computer Society, 2005.

[BSW83] R.E. Bank, A.H. Sherman, and A. Weiser. Some refinement algorithms and data struc-
tures for regular local mesh refinement. In R. Stepleman et al., editors, Scientific Com-
puting, Applications of Mathematics and Computing to the Physical Sciences, Volume I.
IMACS, North-Holland, 1983.

[BW06] P. Bastian and C. Wieners. Multigrid Methods on Adaptively Refined Grids. Computing
in Science & Engineering, 8:44–54, November 2006.

[HKMR06] F. Hülsemann, M. Kowarschik, M. Mohr, and U. Rüde. Parallel geometric Multigrid. In
A.M. Bruaset and A. Tveito, editors, Numerical Solution of Partial Differential Equa-
tions on Parallel Computers, volume 51 of Lecture Notes in Computational Science
and Engineering, pages 165–208. Springer, 2006.

[LW05] S. Lang and G. Wittum. Large-scale density-driven flow simulations using parallel
unstructured Grid adaptation and local multigrid methods. Concurrency and Computa-
tion: Practice and Experience, 17:1415–1440, September 2005.

[Mei06] U. Meier Yang. Parallel Algebraic Multigrid Methods — High Performance Precondi-
tioners. In A.M. Bruaset and A. Tveito, editors, Numerical Solution of Partial Differ-
ential Equations on Parallel Computers, volume 51 of Lecture Notes in Computational
Science and Engineering, pages 209–236. Springer, 2006.

[Rüd93a] U. Rüde. Fully Adaptive Multigrid Methods. SIAM Journal on Numerical Analysis,
30(1):230–248, February 1993.

[Rüd93b] U. Rüde. Mathematical and Computational Techniques for Multilevel Adaptive Meth-
ods, volume 13 of Frontiers in Applied Mathematics. SIAM, 1993.

[TOS01] U. Trottenberg, C. Oosterlee, and A. Schüller. Multigrid. Academic Press, 2001.

38

SDVMR: A Scalable Firmware for FPGA-based Multi-Core
Systems-on-Chip

Andreas Hofmann and Klaus Waldschmidt

J. W. Goethe-University, Technical Computer Sc. Dep.,

Box 11 19 32, D-60054 Frankfurt, Germany

E-mail: {ahofmann,waldsch}@ti.informatik.uni-frankfurt.de

Abstract: As the main scope of mobile embedded systems shifts from control to data
processing tasks high performance demand and limited energy budgets are often seen
conflicting design goals. Heterogeneous, adaptive multicore systems are one approach
to meet these challenges. Thus, the importance of multicore FPGAs as an imple-
mentation platform steadily grows. However, efficient exploitation of parallelism and
dynamic runtime reconfiguration poses new challenges for application software devel-
opement. In this paper the implementation of a virtualization layer between applica-
tions and the multicore FPGA is described. This virtualization allows a transparent
runtime-reconfiguration of the underlying system for adaption to changing system en-
vironments. The parallel application does not see the underlying, even heterogeneous
multicore system. Many of the requirements for an adaptive FPGA-realization are
met by the SDVM, the scalable dataflow-driven virtual machine. This paper describes
the concept of the FPGA firmware based on a reimplementation and adaptation of the
SDVM.

1 Introduction

Multicore systems are no longer restricted to the area of high performance computing.

Today, as the main scope of embedded systems shifts from control oriented applications

to data processing tasks even mobile phones contain chipsets which provide multiple, het-

erogeneous cores. To satisfy market needs those mobile devices must provide audio and

video processing capabilites and therefore have high performance demands despite living

on a tight energy budget.

Multicore systems consisting of heterogeneous components are one way to tackle these

conflictive design goals. Further freedom of design space exploration is provided if these

systems can be reconfigured at runtime and therefore adapt to changing needs of the ap-

plication. For example, to optimize the power management the number of active, or even

existing, cores can be adapted dynamically to the current workload. Therefore, the im-

portance of multicore FPGAs as an implementation platform steadily grows as they allow

to design parallel systems with most of the components placed on-chip. With multiple

processor cores, both as fixed hardware (hardcore) or implemented using the configurable

logic (softcores), and their ability to reconfigure they provide a good basis for parallel,

scalable and adaptive systems.

39

To efficiently exploit parallel and adaptive systems the application software must cope

with the changing number of existing cores and manage the hardware reconfiguration. As

these features are shared by most applications running on such a system it is beneficial to

provide a virtualization layer which hides the – due to runtime reconfiguration – changing

hardware system from the application software. The Scalable Dataflow-driven Virtual

Machine (SDVM) is such a virtualization of a parallel, adaptive and heterogeneous cluster

of processing elements [Aut05, Aut04]. Thus, it is well suited to serve as a managing

firmware for multicore FPGAs and to fulfill the above mentioned requirements. This paper

covers the description of the main features and the general concept of the firmware.

This paper is structured as follows: Section 2 describes the fundamentals of FPGAs

and gives an outline of the firmware concept. Section 3 discusses the realization of the

firmware using the SDVM and the developement system architecture it is tested on. Sec-

tion 4 gives an overview of related work. The paper closes with a brief conclusion in

Section 5.

2 A Firmware concept for FPGAs

Besides the primary functions that a System-on-Chip (SoC) should accomplish, e.g. speech

encoding in a cell phone or packet filtering in a network router, their design has to address a

multitude of secondary requirements. These requirements are important for most systems,

merely the weighting differs. The introduction of FPGAs as a target platform for SoCs

adds an other important requirement: The runtime reconfiguration ability of some FPGAs

provide additional flexibility to the system. To make optimal use of these reconfigurable

systems an efficient management of the reconfiguration process is necessary.

The list of secondary requirements can be summarized as follows:

• performance and scalability

• support for parallelism

• adaptivity

• robustness and reliablity

• energy efficiency

• support for runtime reconfiguration

• incorporation of heterogeneous components

As these requirements and therefore the techniques to achieve them are common to a

vast number of SoCs it is beneficial to supply a generic module which manages these

supporting features. This lightens the burden of the designer who can concentrate on the

primary functions of the SoC.

To avoid an increase in complexity, provide flexibility, and improve portability and code

reusability through different hardware the division of the functionality into several layers is

a possible solution. The aforementioned generic module should therefore be implemented

40

System FPGA Slices RAMB16

1 MicroBlaze Virtex4 FX20 2,025 (23 %) 36 (52 %)

2 MicroBlaze Virtex4 FX20 3,958 (46 %) 68 (100 %)

1 PPC Virtex4 FX20 1,158 (13 %) 36 (52 %)

1 PPC + 1 MB Virtex4 FX20 3,067 (35 %) 68 (100 %)

2 PPC Virtex-II Pro 30 2,096 (15 %) 38 (50 %)

4 MicroBlaze Virtex-II Pro 30 7,513 (54 %) 132 (97 %)

2 PPC + 2 MB Virtex-II Pro 30 5,768 (42 %) 132 (97 %)

Table 1: Resource requirements of multi-processor systems implemented on different Xilinx FPGAs

as a functional layer between the system hardware and the application software thus acting

as a middleware.

The middleware should provide a complete virtualization of the underlying hardware. The

application has no longer to be tailored to the hardware, instead it is sufficient to tailor it to

the virtual layer. This virtual layer not only provides hardware independence, it can also

hide changes in the underlying hardware due to reconfiguration. Thus, such a middleware

is specifically well suited to be used as a firmware for FPGAs.

2.1 Dynamically reconfigurable platform FPGAs

A generic FPGA architecture consists of three major components: Configurable logic

blocks (CLBs), input/output blocks (IOBs) and a configurable routing network that con-

nects all IOBs and CLBs. The CLBs can be used to implement arbitrary logic functions

while the IOBs provide the physical interface to the off-chip environment. Today, FPGAs

are no longer limited to these basic components. They incorporate additional specialized

function blocks like embedded memory or processor cores. Thus, modern FPGA can im-

plement complete parallel system architectures on-chip, so-called microgrids.

Any function block which is implemented on an FPGA using dedicated silicon area and

therefore uses no CLBs is called a hard macro. If the function block realizes a processor

core it is more accurately called a hardcore. In contrast, processor cores which are im-

plemented solely using the CLBs are called softcores. However, hardcores may require

additional support logic which has to be implemented in CLBs to be fully usable.

The vast amount of CLBs enables the designer to add several softcores. As seen in Table 1

even the second smallest device of the Virtex-4 FX family can host two MicroBlaze soft-

cores including an FPU and dedicated RAM each and still has more than 50 % free logic

resources that can be used to implement application specific functions. Larger FPGAs can

support systems with four cores and still have 42 % of their logic elements unsused.

2.2 The Middleware concept

To efficiently use a dynamic reconfigurable FPGA as an implementation architecture for

multi-core systems the middleware has to support a number of different features.

41

Today, even small FPGAs can host multiple cores (See Table 1). Besides vendor-supplied

softcores or embedded hardcores system designers often add application specific function

blocks like digital signal processors (DSP) or specialized datapath units. Unless a distinc-

tion is necessary these cores and function blocks will be referred to as processing elements

(PE) in the following.

The logic resources and therefore the computing power of the FPGA and the internal

memory blocks can be distributed evenly among all PEs, but there are resources which

cannot be efficiently split. The most important one being the external memory. As FPGAs

typically have only up to some hundred kilobytes of internal memory – the smaller ones

actually provide less than one hundred kilobytes – a lot of applications require external

memory. Therefore, the middleware should support a multi-level memory architecture

that is transparent to the application software.

Besides external memory every interface of the FPGA system to the outside world like

ethernet or PCIe cannot be allocated to every PE. The middleware must manage these

resources on the cluster level.

The middleware should provide a complete virtualization of runtime reconfigurable plat-

form FPGAs. Therefore it has to support the following primary features:

• Combine all PEs on the FPGA to create a parallel system.

• Provide task mobility between all PEs even if they are heterogenous. It should be

possible to execute a task on general purpose processors of different architectures

and on custom function units if applicable.

• Virtualize the I/O-system to enable the execution of a task on an arbitrary PE.

• Combine the distributed memory of each PE to form a virtually shared memory. To

avoid bottlenecks each PE should have its own memory both for program and data.

On the other hand, applications for shared memory are much easier to design than

applications for message passing systems. Thus, the distributed memory should be

transparent to the applications.

• Manage the reconfiguration of the FPGA, i.e. keep track of the current usage of the

FPGA resources and available alternative partial configurations. Furthermore, an

adequate replacement policy has to be defined.

• Monitor a number of system parameters to gather information the configuration re-

placement policy depends on.

• Adjust the number of active PEs at runtime. For example, this can be used to meet

power dissipation or reliability targets.

• The previous feature requires the firmware to hide the actual number of PEs from

the application to ease programming.

• As the user software does not know the number and architecture of the PEs the

firmware has to provide dynamic scheduling as well as code and data distribution.

One of the fundamental decisions in the design process of the firmware is whether each PE

forms an independent building block of the parallel cluster or multiple PEs are merged in

a higher-order cluster element. The latter may impose less overhead but the former eases

42

the implementation of adaptive features like coping with errors in the fabric or reducing

hotspots.

If each PE is augmented with a complete set of the virtualization functions and therefore

no PE is the sole provider of any function, the system is much more flexible. If an error is

detected in some part of the FPGA the affected PE can be disabled or reconfigured to avoid

the erroneous location without hampering the functionality of the cluster. Furthermore, as

each augmented PE provides its share of the cluster management functionality the number

of bottlenecks is reduced. The distribution of functionality can lead to a better distribution

of workload thus reducing the number of hotspots on the FPGA.

In addition, the firmware depends to a much lesser extent on the number and type of

cores in a cluster if it runs on each core independently and communicates using hardware-

independant messages.

Therefore, the middleware will be implemented as a firmware running on each core of

the FPGA based system. The parallel cluster is created by the communication of each

firmware instance with the other instances.

3 Realization

In this section the realization of the presented virtualization concept is described. Due to

its features which match the requirements specified in Section 2, the SDVM was chosen

as a basis. Thus, the firmware for FPGA-based reconfigurable systems is called SDVMR.

3.1 The Scalable Dataflow-driven Virtual Machine (SDVM)

The Scalable Dataflow-driven Virtual Machine (SDVM) [Aut05, Aut04] is a dataflow-

driven parallel computing middleware (see Fig. 1). It was designed to feature undisturbed

parallel computation flow while adding and removing processing units from computing

clusters. Applications for the SDVM must be cut to convenient code fragments (of any

size). The code fragments and the frames (a data container for parameters needed to ex-

ecute them) will be spread automatically throughout the cluster depending on the data

distribution.

Each processing unit which is encapsulated by the SDVM virtual layer and thus acts as

an autonomous member of the cluster is called a site. The sites consist of a number of

modules with distinct tasks and communicate by message passing. The SDVM has been

implemented as a prototypical UNIX-daemon to be run on each participating machine or

processor, creating a site each.

The SDVM is a convenient choice as a middleware (virtual layer) for FPGAs due to several

distinguishing features. The two most important features are that the SDVM cluster can

be resized at runtime without disturbing the parallel program execution, and each site in a

cluster can use a different internal hardware architecture. These two features are the basis

for the runtime reconfiguration ability of the system.

43

Figure 1: The processing units are encapsulated by an SDVM site each. The sites form the SDVM
virtual layer. The applications don’t see the underlying (possibly heterogeneous) hardware.

During a reconfiguration cycle a site drops out of the cluster, its logic estate gets recon-

figured and the newly created core joins the cluster. The displacement of data and code

objects is managed by the SDVM middleware. Besides changes of the sites’ architectures

the cluster resize mechanism can be used to adapt the cluster to different grades of paral-

lelism of the currently running applications. On an excess of computing power sites can

drop out of the cluster shutting down the affected area of the FPGA to minimize power

consuption. When the demand for computing power rises free areas of the FPGA can be

used to deploy new sites thus increasing the capacity of the cluster.

The integration of adaptive features into the middleware which can be used to adjust the

behaviour of the system to a variety of targets requires knowledge gathered at runtime.

For example, a power management policy using the SDVM was developed which can be

used to improve the reliability of a multicore chip [Aut06]. Independent selection of the

core’s power states in conjuction with dynamic parallelism is used to minimize temper-

ature changes of the chip thereby improving the reliability significantly while sacrific-

ing less performance than simpler power management policies. The policy requires the

collection of serveral runtime parameters like the amount of workload and current core

temperature which are gathered and distributed by the SDVM.

All in all the SDVM offers the following features that are beneficial for the implementation

of an FPGA middleware:

• undisturbed parallel computation while resizing the cluster

• dynamic scheduling and thereby automatic load balancing

• distributed scheduling: no specific site has to decide a global scheduling and there-

fore any site can be shut down at any time

• participating computing resources may have different processing speeds

• participating computing resources may use different hardcores and softcores

• applications may be run on any SDVM-driven system, as the number and types of

the processing units do not matter

• no common clock needed: the clock is locally synchronous but globally asyn-

chronous.

• support for distribution of knowledge gathered at runtime

44

Figure 2: Each core is encapsulated by a SDVM site. The sites are implemented as software running
on the cores.

3.2 Different realization schemes

One important question when implementing a parallel system on an FPGA is, how the

reconfigurable area provided by the FPGA is used. There are two primal possibilities:

1. The available resources on the FPGA are used up by configuring additional process-

ing units. Thus, the SDVMR cluster consists of more sites and a higher parallelism

can be achieved. The number of sites can be changed by reconfiguration to adopt to

the available parallelism of the application as far as FPGA resources permit.

2. The FPGA fabric is used to implement custom function units, each attached to and

therefore controlled by one of the cores. The function units conform to specific code

fragments which are to be executed often. The supported functions of the custom

function units can be changed at runtime by reconfiguration to adapt the system to

the needs of the application.

The different approaches can be combined (see Fig. 2). This is especially aided by the

fact that both the MicroBlaze and the PowerPC hardcore provide a fast low-level interface

to the FPGA logic fabric. In this way the middleware still runs as software on the core

while the some of the data processing is shifted to specialized hardware (i.e. the logic

fabric). The realization of the middleware functions as hardware modules is an option for

the future.

3.3 Developement system architecture

For the developement of the SDVMR firmware a scalable system has been created using

the Xilinx EDK 8.1 software. The system is based on IP blocks supplied by Xilinx which

are included in EDK. As the processing element the MicroBlaze softcore is used. It is

supported by a timer and an interrupt module connected to a local On-Chip Peripheral

Bus (OPB) to allow for the execution of the Xilinx XMK realtime operating system. The

MicroBlaze core has 64 KB of embedded memory blocks connected to its Local Mem-

ory Bus (LMB) to store and execute the firmware. These four IP blocks build the basic

processing element of the system.

45

Figure 3: The system architecture of a dual core MicroBlaze system. The grey-shaded box is omitted
for a single core system; for multicore systems it is replicated for each additional core.

The communication between the processing elements is done using a shared memory con-

nected to the system OPB. To allow for mutual exclusion of the access to this memory

and to the RS232 interface a hardware mutex modul is attached to the system OPB. The

multiple cores are attached to the system using OPB-to-OPB bridges (See Fig. 3).

The PowerPC based system is basically the same. The MicroBlaze and its memory is

replaced by the PowerPC core and a PLB-connected memory block. The resource re-

quirements of different system configurations are listed in Table 1. The MicroBlaze is

implemented with all features and FPU enabled but without caches and debugging sup-

port.

As the hardware basis a Virtex4 FX20 populated evaluation board was chosen due to its

fine-grained reconfiguration features and embedded PowerPC core. Resources, especially

embedded memory blocks, are quite limited on the V4FX20 to implement systems with

more than two cores, so a Virtex-II Pro 30 based system is used for tests with 2 PowerPCs

and up to 4 MicroBlaze cores. The busses and MicroBlazes cores of all systems run at 100

MHz clock frequency; the PowerPC cores are clocked at 300 MHz.

3.4 Preliminary performance results

The current developement version of the SDVMR has been tested with a parallel appli-

cation calculating a mandelbrot set. The application is mapped to the execution model of

the SDVMR in such a way that the calculation of a row of the mandelbrot set is done in

one code fragment. Thus, the parallelism of the application increases with the number of

rows to calculate. The disadvantage of this straight-forward approach is that the runtime of

each instance of this code fragment differs. This is due to the mandelbrot algorithm which

requires a different amount of iterations depending on the current point it is calculating.

The application has been tested on the one, two and four core systems including combina-

tions of PowerPC and MicroBlaze cores described in Section 3.3. The results are shown

in Table 2.

Despite the lower clock frequency of the MicroBlaze (100 MHz) compared to the PowerPC

cores (300 MHz) the latter ones are much slower due to a missing FPU. The dualcore

PowerPC system scales noticeably better that the dualcore MicroBlaze system with an

46

System FPGA CPU-Clock Runtime Efficiency

1 MicroBlaze V4FX20 100 MHz 7181 —

2 MicroBlaze V4FX20 100 MHz 3826 0.94

4 MicroBlaze V2Pro30 100 MHz 2290 0.78

1 PPC V4FX20 300 MHz 65574 —

2 PPC V2Pro30 300 MHz 33045 0.99

1 PPC + 1 MB V4FX20 300/100 MHz 6800 —

Table 2: Runtimes of a single-precision floating point mandelbrot set

efficiency of 0.99 compared to 0.94. For the four core MicroBlaze system the efficiency

drops to 0.78. As the MicroBlaze system is more than 8 times faster it is more sensitive

to the way the workload is distributed. As long as a site has nothing to do it keeps asking

other sites for work every once in a while. Currently, this request rate is fixed. Therefore

some sites may sit idle for some time even if new work is available.

4 Related work

The middleware presented in this paper uses hardware abstraction based on a virtual layer

to exploit runtime reconfiguration and parallelism of currently available FPGAs on system

level. Most of related work in this field either focuses on the virtualization of an FPGA

on the level of the logic fabric, or on techniques for runtime reconfiguration. Furthermore

the discussion of adaptive features is most often detached from concrete implementation

technologies. An overview of related work in a broader sense confirm this.

Roman Lysecky et al. developed techniques for dynamic hardware/software partitioning

based on online profiling of software loops and just-in-time (JIT) synthesis of hardware

components called WARP [LV05]. They also present a dynamic FPGA routing approach

which can be used to solve the routing and placement problem of reconfigurable compo-

nents at runtime [LVT04]. However, their approach relies on a special, to our knowledge

not yet implemented, FPGA architecture called Configurable Logic Architecture [LV04].

To overcome the need for this special FPGA architecture Roman Lysecky et al. developed

a virtualization layer for FPGAs [LMVV05] which is placed on top of the logic fabric of

a real FGPA. This virtualization layer emulates the Configurable Logic Architecture and

enables the use of JIT techniques on existing FPGAs but leads to a 6X decrease in perfor-

mance and a 100X increase in hardware requirements. In contrast the concept presented

in our paper uses softcores and functional units specifically designed to the target FPGA

family thus the overhead should be much lower.

The usage of adaptive features to tackle the complexity of modern SoCs is extensively

covered by Gabriel Lipsa et al. [LHR+05]. Their paper proposes a concept that applies

autonomic or organic computing principles to hardware designs. The paper does not

present any kind of implementation, neither as software nor as hardware. The SDVMR

as a firmware for FPGAs is a software-realization of these autonomous principles.

47

5 Conclusion

In this paper a middleware providing a virtualization layer for FPGAs is presented. The

virtualization layer hides the changing hardware of a reconfigurable FPGA-based system

from the application software. Thereby, it allows to exploit runtime reconfiguration and

parallelism of currently available FPGAs on system level. It is based on the SDVM, a

middleware for computer clusters and multicore chips. Due to its features, the FPGA may

reconfigure itself at runtime to adapt to changing conditions and requirements. The work

is currently under developement and some preliminary performance results are presented.

References

[HDHW06] Jan Haase, Markus Damm, Dennis Hauser, and Klaus Waldschmidt. Reliability-aware
power management of Multi-Core Processors, 2006. DIPES 2006, Braga, Portugal.

[HEKW04] Jan Haase, Frank Eschmann, Bernd Klauer, and Klaus Waldschmidt. The SDVM:
A Self Distributing Virtual Machine. In Organic and Pervasive Computing – ARCS
2004: International Conference on Architecture of Computing Systems, volume 2981
of Lecture Notes in Computer Science, Heidelberg, 2004. Springer Verlag.

[HEW05] Jan Haase, Frank Eschmann, and Klaus Waldschmidt. The SDVM - an Approach for
Future Adaptive Computer Clusters. In 10th IEEE Workshop on Dependable Parallel,
Distributed and Network-Centric Systems (DPDNS 05), Denver, Colorado, USA, April
2005.

[LHR+05] Gabriel Lipsa, Andreas Herkersdorf, Wolfgang Rosenstiel, Oliver Bringmann, and
Walter Stechele. Towards a Framework and a Design Methodology for Autonomous
SoC. In Uwe Brinkschulte, Jürgen Becker, Dietmar Fey, Christian Hochberger, Thomas
Martinetz, Christian Müller-Schloer, Hartmut Schmeck, Theo Ungerer, and Rolf P.
Würtz, editors, ARCS Workshops, pages 101–108. VDE Verlag, 2005.

[LMVV05] Roman L. Lysecky, Kris Miller, Frank Vahid, and Kees A. Vissers. Firm-core Virtual
FPGA for Just-in-Time FPGA Compilation (abstract only). In Herman Schmit and
Steven J. E. Wilton, editors, FPGA, page 271. ACM, 2005.

[LV04] Roman Lysecky and Frank Vahid. A Configurable Logic Architecture for Dynamic
Hardware/Software Partitioning. In DATE ’04: Proceedings of the conference on De-
sign, automation and test in Europe, page 10480, Washington, DC, USA, 2004. IEEE
Computer Society.

[LV05] Roman Lysecky and Frank Vahid. A Study of the Speedups and Competitiveness of
FPGA Soft Processor Cores using Dynamic Hardware/Software Partitioning. In DATE
’05: Proceedings of the conference on Design, Automation and Test in Europe, pages
18–23, Washington, DC, USA, 2005. IEEE Computer Society.

[LVT04] Roman Lysecky, Frank Vahid, and Sheldon X.-D. Tan. Dynamic FPGA routing for just-
in-time FPGA compilation. In DAC ’04: Proceedings of the 41st annual conference on
Design automation, pages 954–959, New York, NY, USA, 2004. ACM Press.

48

Adaptive Cache Infrastructure:

Supporting dynamic Program Changes

following dynamic Program Behavior

Fabian Nowak Rainer Buchty

Wolfgang Karl

Universität Karlsruhe (TH), Institut für Technische Informatik (ITEC)

Zirkel 2, 76131 Karlsruhe, Germany

{nowak|buchty|karl}@ira.uka.de

Abstract: Recent examinations of program behavior at run-time revealed distinct
phases. Thus, it is evident that a framework for supporting hardware adaptation to
phase behavior is needed. With the memory access behavior being most important and
cache accesses being a very big subset of them, we herein propose an infrastructure
for fitting cache accesses to a program’s requirements for a distinct phase.

1 Introduction

When regarding a program’s long-time behavior, it is evident that each program consists

of at least three different phases: the first one can be called the initialization phase, the

second one the main or computational phase, and the last one the final or termination

phase [LY91]. It can even be shown that after millions of instructions in the so-called

main phase, new phases of program execution commence [SPH+03]. Metrics changing

from phase to phase include, but are not limited to, branch prediction, cache performance,

value prediction, and address prediction [SC99, BABD03].

By providing an architecture tailored at only one phase, as is done usually, this very phase

is executed with best results concerning the aspired enhancements, i.e. performance or

energy efficiency. By means of reconfiguration, however, we are able to support a program

during its whole run-time when adapting the hardware in every distinct phase.

In this paper, we address the basic concept, present our latest implementation results, and

show in detail how much cache reconfiguration can possibly speed up program execution

by giving benchmark [GRE+01] results. Furthermore, we show a simple means to handle

phase changes more dynamically.

This is especially interesting for scientific super-computing where slight enhancements

of the whole system can result in some fewer days of computation or less energy con-

sumption, and therefore, cooling and money savings. Another interesting aspect is to

further speed up execution of parallel computing nodes sharing some memory levels, like

L2 cache and main memory, by dynamically partitioning a cache’s area to the different

processors’ needs.

49

The rest of this paper is organized as follows: as a start, an overview of the finished and

ongoing work is given. Upon that base, in Section 3 we present a novel architecture for

supporting cache reconfiguration at reunite. The current state of our implementation is then

summed up in Section 4 giving a first impression of how much speed-up can be achieved.

This is explained in detail in Section 5. In order to round off the whole work, an application

supporting the tool-chain is illustrated. The paper finishes with the conclusion.

2 Related work

Much work was done already in the vast field of cache partitioning and cache adaptation.

As far as cache partitioning is concerned, dividing into instruction and data caches is a

very well-known method for increasing cache hit-rates. Other methods are partitioning

into scalar and array data caches [NKOF07] or separating by temporal and spatial locality

[GAV95]. The last approach was extended by Johnson and Hwu by means of memory

address tables yielding a speed-up of up to 15% [JmWH97]. They request a framework

for intelligent run-time management of the cache hierarchy. Partitioning can also be used

for offering instruction reuse buffers based on cache technology as is done by Ranganathan

et al. in [RAJ00]. Unfortunately, some software changes have to be made for the system

to work. Suh et al. examined dynamic partitioning of shared cache memory [SRD04] and

come to the conclusion that re-partitioning only needs to take place when a context switch

occurs.

Cache adaptation, which may benefit of cache partitioning, requires the micro-system to

monitor its memory system performance, detect changing demands, and initiate reconfig-

uration of at least a subpart of the memory system. Benitez et al. evaluate performance

and energy consumption of a cache system, which is very limited concerning possible pa-

rameter changes. With their micro-architecture of the Field-Programmable Cache Array

(FPCA), they also introduce basic phase detection where branches are counted as a simple

means to recognize possible changes related to the memory system [BMRL06]. When

reconfiguring, any cache content is lost, thus reconfiguration has to be controlled with the

processor initiating a cache flush in advance.

More sophisticated phase detection is achieved by Sherwood et al. based on basic block

vectors and clustering [SPHC02]. Similarly, Balasubramonian and Albonesi managed

phase detection by measuring branch frequencies and cache misses. Upon this informa-

tion, cache parameter adjustment is carried out, such as sizes, associativities and access

latencies [BABD03]. In their latest work, Huffmire and Sherwood applied wavelet-based

phase detection onto L1 accesses and are able to accurately predict L2 miss rates, and thus,

phases [HS06].

With their work towards reconfigurable cache memory, Ogasawara et al. proved that vary-

ing certain cache parameters indeed makes sense [OTW+06]. Despite delivering first re-

sults, their system is only tailored at simulation and very limited with respect to variety of

dynamic parameters.

50

In the embedded field, Vahid and Gordon-Ross among others are developing configurable

cache controllers with a strong focus on embedded applications and energy consumption

[ZVN03, GRVD04, GRV07, GRZVD04].

A concept of the required tool-chain for a reconfigurable system was worked out by Mei et

al. [MVML01]. It consists of a two-level approach that is based on profiling and mapping

and should be adaptable to the hardware infrastructure under development at our chair.

3 Reconfigurable Cache Architecture

The first goal of our architecture was the creation of a cache capable of acting both as

Level-1 and Level-2 cache. Secondly, it has to be reconfigurable. As a last aspect, we

want the cache controller to be synthesizable for hardware usage.

While most reconfigurable caches depend on the reconfiguration capabilities of the un-

derlying FPGA chip, our implementation handles the reconfiguration logically, only by

hardware logic in the controller itself. This decision offers a great degree of freedom in

choosing different sizes for both the cache memory and its control and replacement infor-

mation, in running with different associativities and in changing replacement strategies.

The cache only caches accesses to the ordinary main memory, which consists of DDR-

SDRAM on the Xilinx ML310 and ML403 evaluation boards available at our institute.

3.1 Cache Structure

As already mentioned, we decided to split the whole cache into three distinct areas: cache

memory, control memory and replacement memory. The control memory indicates whether

the according cache line is valid, modified, partly valid and additionally stores the tag. The

replacement memory is only needed, when an associativity of more than one and a more

sophisticated replacement strategy like LRU is used. In Figure 1, the layout of a 2-way

set-associative cache with eight lines and a replacement strategy like FIFO, Pseudo-LRU,

or LRU is illustrated.

3.2 Cache Controller

The cache controller handles several things: not only is it responsible for serving read/write

requests to the cache memories explained above, but also for initiating the reconfiguration

process, which in return is executed by the reconfiguration controller, and providing a

monitoring unit for access data aggregation. The controller employs distinct buses for its

individual tasks: it interfaces to the external DDR-SDRAM, to which memory read/write

requests from the PLB are forwarded if no entry is found in the cache. Furthermore,

51

Replacement
M e m o r y

Cache Memory

Cache Data

Contro l Memory

M V Tag BE
Repl. info

per set

(BE = Byte Enable bits)

Figure 1: Exemplary cache layout

the controller features a dedicated DCR bus connection for reconfiguration purpose and

monitoring control, and a dedicated monitoring interface to output monitor data.

The controller’s monitoring unit provides therefore a 64 bit wide output register containing

information about cache hits and misses, the conflict-causing line number, and additionally

the complete memory address. Hence, it is possible to both collect information for on-line

and off-line analysis, and achieve phase prediction such that the processor can initiate

cache reconfiguration itself or have the system automatically adopt to the detected phase

changes. The monitor output register is depicted in Figure 3.

As a reaction to program phases, reconfiguration might take place. Cache reconfiguration

is achieved by requesting the controller to enter the reconfiguration state, then writing

new parameterization values, explicitly indicating the end of the reconfiguration request,

and waiting for the reconfiguration process to finish. Meanwhile, the processor could do

different tasks not involving the cached main memory. But for ease of implementation

and in order to avoid additional code for busy waiting, we decided to simply halt the

processor. In [NBK07], we already proved that several traditionally fixed cache parameters

are reconfigurable and presented some implementation approaches using heuristics where

necessary. The complete process is illustrated in Figure 2.

4 Implementation Results

Figure 4 illustrates the complete extended cache/memory controller, including all inter-

faces and sub-modules controlling these interfaces or accessing them.

We are currently in process of synthesizing the whole design for the Virtex-II Pro and the

Virtex-4 FX12 in order to benchmark the system in real hardware. First results show that

some modifications still have to be made to the design; especially, the maximum clock rate

is only at 9.779 MHz. This is due to the fact that the processor clock is also used for lots

of comparisons for memory accesses dependent on the chosen associativity and number

52

<va lues>

Done
 Values_received

Enable

DoneDone

 Power PC DCR Control ler Cache Control ler Reconf igurat ion

DCR Write

DCR Write

New values
received

Reconfiguring

Reconfiguring

Status=
Finished

Figure 2: Reconfiguration flow

Valid

Cache read

Cache write

Hit

Miss

Burst transfer

Write allocate

Line in set

Address

Hit

Miss

...

 0 1 2 3 4 5 6 9 10 11 34 63 33 ...

Figure 3: Monitor output register: the unused bits
are intentionally reserved for further extensions
to the current monitoring interface.

of sets. Hence, the core is currently undergoing re-design for a Virtex-4 FX100 to better

match current FPGA’s hardware resources, achieving much improved clock rates.

In Table 1, we present the hardware resource usage of parts of the current implementation

targeting the Virtex-II Pro, that is to say of the cache controller, the reconfiguration module,

the DCR controller, the monitoring component and the basic PLB DDR Components. We

again want to emphasize that these numbers reflect the very first concept study and are not

to be taken as architecture-optimized numbers for production use in computing systems.

 PLB_IPIF

 REPLACEMENT

 DDR_CTRL

CONTROL_BRAM

REPLACEMENT_BRAM

 CACHE_CONTROLLER
DDR SD-RAM

 DCR-Bus

 PLB

 RECONFIGURATION

REPLACEMENT_BRAM

CACHE_BRAM

 MONITOR

 DCR_CTRL

 Memory / Monitor
 Interface

 CACHE_BRAM
 CONTROL_BRAM

Figure 4: Reconfigurable Cache Controller Architecture

53

Logic Utilization Used Available Utilization

Total Number Slice Registers 2089 27392 7.6%

Number used as Flip Flops 1826

Number used as Latches 263

Number of 4 input LUTs 37980 27392 138.7%

Logic Distribution

Number of occupied Slices 20212 13696 147.7%

Total Number of 4 input LUTs 38660 27392 141.1%

Number used as logic 37980

Number used as a route-thru 680

Number of MULT18X18s 2 136 1.471%

Number of GCLKs 10 16 62.5%

Total equivalent gate count for design 268036

Additional JTAG gate count for IOBs 79488

Table 1: Hardware resource usage of synthesized components.

5 Application Speed-Up

Given the benchmark results from [GRE+01], we will show how much speed-up can be

obtained. First, we write down the rather simple formula for calculating whether reconfig-

uration is appropriate and for comparing the overall memory access time with reconfigu-

ration to the overall memory access time without adaptation to program phases.

nwm ∗ twm + nwh ∗ twh + nrm ∗ trm + nrh ∗ trh >

n′

wm ∗ twm + n′

wh ∗ twh + n′

rm ∗ trm + n′

rh ∗ trh +treconfiguration (1)

where nwm indicates the number of write misses, thr the time required for serving a read

request when a hit in the cache occurs, and n′ the numbers achieved after reconfiguration.

As can be seen easily, the overall memory access time is the sum of the cycles needed in

all program phases plus their respective reconfiguration times.

Then we want to outline the time needed for both cache accesses and reconfiguration time

measured in clock cycles. Table 2 gives a comparison of the implemented memory access

times with and without our cache. Obviously, most speed-up can be achieved by increasing

the read hit rate, while the write accesses do not contribute too much.

Access type Duration w/o cache Duration w/ cache

Read Hit 15 8 + �n/2�
Read Miss 15 15 + �(a − 1)/2�
Write Hit 9 8 + �n/2�
Write Miss 9 10 + �(a − 1)/2�

n denotes the line in the set where the hit occurs; a denotes the level of associativity.

Table 2: Access times to main memory without and with cache (using write-through)

54

Already upon that basis, we are able to extend Equation 1 to the following for a one- and

two-way set-associative cache:

c ∗ (pwm ∗ 10 + pwh ∗ 8 + prm ∗ 15 + prh ∗ 8) >

c′ ∗ (p′wm ∗ 10 + p′wh ∗ 9 + p′rm ∗ 15 + p′rh ∗ 9) +treconfiguration (2)

where nα = pα∗c, c the number of memory access cycles “per phase”, and
∑

i pi = 1. Of

course, we have to pay attention to use the best case access times for the first part, while

in contrast the worst case has to be regarded for the second part.

Regarding reconfiguration time, it must be noted that for area and memory concerns, the

reconfiguration of associativity only saves half of the cache’s content. This decision makes

reconfiguration up to 37% faster. The process is thus split into two phases with the first one

being responsible for assuring cache consistency of the “rear half” by executing write-back

where necessary and the second one moving cache lines to their new locations. The first

step takes either 2 or 12 cycles per cache line, depending on whether write-back is needed.

If write-through is used for write accesses, this step is only responsible for invalidating the

“rear” cache lines. The second phase then takes 3 cycles per cache line for rearranging

cache line data (this is indeed where reconfiguration would need double the time if the

whole cache content was kept).

Hence, for doubling associativity, a one-way set-associative cache with 1024 lines and

write-through strategy requires 512 ∗ 2 + 512 ∗ 3 = 2560 cycles (ignoring the few setup

cycles of each reconfiguration step).

Now, the memory access count stays the same when executing a disinct phase with a

different configuration, thus, c = c′. In addition, we assume an enhancement of cache

hit rate of 20% as stated in [ZVN03] when going from one-way to two-way associativity.

We further assume pwm = pwh = p′wm = p′wh = 0.25, prh = prm = 0.25. With

this enhancement, we get p′rh = 0.3 and accordingly p′rm = 0.2. Equation 2 therefore

becomes

c ∗ (0.25 ∗ 10 + 0.25 ∗ 8 + 0.25 ∗ 15 + 0.25 ∗ 8) >

c ∗ (0.25 ∗ 10 + 0.25 ∗ 9 + 0.2 ∗ 15 + 0.3 ∗ 9) + 2560 (3)

⇔

c ∗ (0.25 ∗ 7 + 0.5 ∗ 15 − 0.3 ∗ 9) > 2560
⇔

c > 2560/(1.75 + 7.5 − 2.7) = 390.84 (4)

Hence, after only 391 memory accesses, the reconfiguration effort proved sensible.

55

6 Toolchain Integration

In order to simplify the correct and consistent parameterization of the rather complex-to-

configure cache-controller, we developed a program with a graphical user interface, which

automatically adjusts all parameters with respect to the user’s demand.

The configurator program has to be invoked manually after having designed the system-

on-chip in Xilinx Platform Studio (XPS) [Xi07]. It then enables the user to e.g. specify

a maximum associativity of 4, while in the beginning of the execution, an associativity of

2 is chosen. Furthermore, it ensures that the data widths of the replacement and control

information are wide enough to store all information required. Having written the changes,

the user can return to XPS and undertake remaining changes, synthesize the description,

and download the bitstream to the device. The configuration task flow is depicted in detail

in Figure 6.

Figure 5: Graphical User Interface for
a-priori configuration of the cache/memory
system

XPS

XPS

Configurator

Create description
of system on chip

Configure cache/
memory system

Synthesize and
download onto chip

Figure 6: Task flow for initial configuration of
the cache/memory system

7 Conclusions and Future Work

We have presented an architecture concept for supporting exploitation of program phase

behavior by adapting a subset of the memory system – the cache system – to a program’s

needs. With such an architecture, it is possible to not only statically reconfigure the system

every n instructions, but to have the operating system decide itself whether it seems advan-

tageous to use another configuration. This is where the particular strength of our approach

becomes obvious: the time needed for reconfiguration can be clearly estimated between

56

lower and upper bounds, which do not differ too much. In contrast, when using dynamic

FPGA reconfiguration, parts of the system have to be halted and due to side effects, the

reconfiguration time may vary unpredictably.

Future work includes the development of a monitoring component, which is capable of

indicating new phases, and operating system functions for phase and system evaluation by

use of the gathered monitoring information and application-embedded hints. These hints

can easily be determined manually by visualization tools like in [TK05] and inserted into

binary code.

We also intend to work on faster main memory access by a more direct connection of the

memory to the processor and on using wider cache-lines. Additionally, offering hardware

acceleration units in the unused cache area seems interesting [KST01].

References

[BABD03] Balasubramonian, R., Albonesi, D. H., Buyuktosunoglu, A., und Dwarkadas, S.: A
dynamically tunable memory hierarchy. IEEE Trans. Computers. 52(10):1243–1258.
2003.

[BMRL06] Benitez, D., Moure, J. C., Rexachs, D. I., und Luque, E.: Evaluation of the field-
programmable cache: performance and energy consumption. In: CF ’06: Proceedings
of the 3rd conference on Computing frontiers. S. 361–372. New York, NY, USA. 2006.
ACM Press.

[GAV95] Gonzàlez, A., Aliagas, C., und Valero, M.: A data cache with multiple caching strate-
gies tuned to different types of locality. In: ICS ’95: Proceedings of the 9th interna-
tional conference on Supercomputing. S. 338–347. New York, NY, USA. 1995. ACM
Press.

[GRE+01] Guthaus, M. R., Ringenberg, J. S., Ernst, D., Austin, T. M., Mudge, T., und Brown,
R. B.: Mibench: A free, commercially representative embedded benchmark suite. In:
WWC ’01: Proceedings of the Workload Characterization, 2001. WWC-4. 2001 IEEE
International Workshop on. S. 3–14. Washington, DC, USA. 2001. IEEE Computer
Society.

[GRV07] Gordon-Ross, A. und Vahid, F.: Dynamic optimization of highly configurable caches
for reduced energy consumption. Riverside ECE Faculty Candidate Colloquium.
March 2007. Invited Talk.

[GRVD04] Gordon-Ross, A., Vahid, F., und Dutt, N.: Automatic tuning of two-level caches to
embedded applications. In: DATE ’04: Proceedings of the conference on Design,
automation and test in Europe. S. 10208. Washington, DC, USA. 2004. IEEE
Computer Society.

[GRZVD04] Gordon-Ross, A., Zhang, C., Vahid, F., und Dutt, N.: Tuning caches to applications for
low-energy embedded systems. In: Macii, E. (Hrsg.), Ultra Low-Power Electronics
and Design. Kluwer Academic Publishing. June 2004.

[HS06] Huffmire, T. und Sherwood, T.: Wavelet-based phase classification. In: PACT ’06:
Proceedings of the 15th international conference on Parallel architectures and com-
pilation techniques. S. 95–104. New York, NY, USA. 2006. ACM Press.

57

[JmWH97] Johnson, T. L. und mei W. Hwu, W.: Run-time adaptive cache hierarchy management
via reference analysis. In: ISCA ’97: Proceedings of the 24th annual international
symposium on Computer architecture. S. 315–326. New York, NY, USA. 1997. ACM
Press.

[KST01] Kim, H., Somani, A. K., und Tyagi, A.: A reconfigurable multifunction computing
cache architecture. IEEE Trans. Very Large Scale Integr. Syst. 9(4):509–523. 2001.

[LY91] Lim, H.-B. und Yew, P.-C.: Parallel program behavioral study on a shared-memory
multiprocessor. In: ICS ’91: Proceedings of the 5th international conference on Su-
percomputing. S. 386–395. New York, NY, USA. 1991. ACM Press.

[MVML01] Mei, B., Vernalde, S., Man, H. D., und Lauwereins, R. Design and optimization of
dynamically reconfigurable embedded systems. 2001. http://citeseer.ist.
psu.edu/mei01design.html.

[NBK07] Nowak, F., Buchty, R., und Karl, W.: A run-time reconfigurable cache architecture. In:
Proceedings of the 2007 Parallel Computing Conference, Aachen/Jülich. September
2007.

[NKOF07] Naz, A., Kavi, K., Oh, J., und Foglia, P.: Reconfigurable split data caches: a novel
scheme for embedded systems. In: SAC ’07: Proceedings of the 2007 ACM sympo-
sium on Applied computing. S. 707–712. New York, NY, USA. 2007. ACM Press.

[OTW+06] Ogasawara, Y., Tate, I., Watanabe, S., Sato, M., Sasada, K., Uchikura, K., Asano,
K., Namiki, M., und Nakajo, H.: Towards reconfigurable cache memory for a multi-
threaded processor. In: Arabnia, H. R. (Hrsg.), PDPTA. S. 916–924. CSREA Press.
2006.

[RAJ00] Ranganathan, P., Adve, S., und Jouppi, N. P.: Reconfigurable caches and their applica-
tion to media processing. In: ISCA ’00: Proceedings of the 27th annual international
symposium on Computer architecture. S. 214–224. New York, NY, USA. 2000. ACM
Press.

[SC99] Sherwood, T. und Calder, B. The time varying behavior of programs. August 1999.
Technical Report UCSD-CS99-630, University of California, San Diego.

[SPH+03] Sherwood, T., Perelman, E., Hamerly, G., Sair, S., und Calder, B.: Discovering and
exploiting program phases. IEEE Micro. 23(6):84–93. 2003.

[SPHC02] Sherwood, T., Perelman, E., Hamerly, G., und Calder, B.: Automatically character-
izing large scale program behavior. In: ASPLOS-X: Proceedings of the 10th interna-
tional conference on Architectural support for programming languages and operating
systems. S. 45–57. New York, NY, USA. 2002. ACM Press.

[SRD04] Suh, G. E., Rudolph, L., und Devadas, S.: Dynamic partitioning of shared cache
memory. J. Supercomput. 28(1):7–26. 2004.

[TK05] Tao, J. und Karl, W.: Optimization-oriented visualization of cache access behavior.
In: Proceedings of the 2005 International Conference on Computational Behavior
(Lecture Notes in Computer Science 3515). S. 174–181. Springer. May 2005.

[Xi07] Xilinx, Inc. Platform Studio and EDK Details. 2007. Web site: http://www.
xilinx.com/ise/embedded/edk_pstudio.htm.

[ZVN03] Zhang, C., Vahid, F., und Najjar, W.: A highly configurable cache architecture for
embedded systems. In: ISCA ’03: Proceedings of the 30th annual international sym-
posium on Computer architecture. S. 136–146. New York, NY, USA. 2003. ACM
Press.

58

A Generic Tool Supporting Cache Design and Optimisation

on Shared Memory Systems

Martin Schindewolf1, Jie Tao2∗, Wolfgang Karl3 and Marcelo Cintra4

1Universität Karlsruhe (TH), Zirkel 2, 76131 Karlsruhe, Germany

schindew@ira.uka.de
2Universität Karlsruhe (TH), Zirkel 2, 76131 Karlsruhe, Germany

jie.tao@iwr.fzk.de
3Universität Karlsruhe (TH), Zirkel 2, 76131 Karlsruhe, Germany

karl@ira.uka.de
4University of Edinburgh, Mayfield Road, EH9 3JZ Edinburgh, United Kingdom

mc@inf.ed.ac.uk

Abstract: For multi-core architectures, improving the cache performance is crucial
for the overall system performance. In contrast to the common approach to design
caches with the best trade-off between performance and costs, this work favours an
application specific cache design. Therefore, an analysis tool capable of exhibiting the
reason of cache misses has been developed. The results of the analysis can be used by
system developers to improve cache architectures or can help programmers to improve
the data locality behaviour of their programs. The SPLASH-2 benchmark suite is used
to demonstrate the abilities of the analysis model.

1 Motivation

As Moore’s Law — the number of transistors per die doubles every 18 months — still

holds, higher clock rates for the cores are feasible due to shorter signal distances. Higher

processor speed demands faster access to the requested data. A computer system can not

exploit its computing capacity if the processor spends time waiting for the data to arrive.

Subsequently, the performance increasingly relies on the efficient use of the caches. There-

fore, a high cache hit rate is indispensable. The common approach is to design caches

whose performance is acceptable for a wide range of applications, as this concept yields

the best trade-off between performance and costs. Anyways, if only a few applications

have to be considered, an application specific cache design allows for better performance

and improved energy efficiency. The idea is to perform a cache miss analysis and use the

results to guide the user through the optimisation process. This paper presents a tool, that

helps system developers to discover application specific cache parameters (such as cache

∗Dr. Jie Tao is now at the Institute for Scientific Computing, Forschungszentrum Karlsruhe, Hermann-von-

Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany

59

size, line size). Further, programmers are supplied with the cause of the cache miss for

performing source code optimisation (see section 4.2). A concise analysis model is de-

signed and implemented. The analysis is based on the cache event trace acquired from

the SIMICS simulation environment. Cache misses are classified according to their cause.

Analysis results help the designers to deduce the best cache configuration for individual

applications. Furthermore, an interface to an existing visualisation tool is implemented,

enabling a graphical representation of the analysis results. Information in this form allows

the human user to easily detect the optimisation target and identify bottlenecks.

The remainder of this paper is organised as follows. Section 2 first gives a brief introduc-

tion to related work. This is followed by a detailed description of the proposed analysis

model and its implementation in section 3. Evaluation results are presented in section 4.

The paper concludes in section 5 with a brief summary.

2 Related Work

Any cache optimisation, either targeting the cache architecture or the source code, re-

lies on the knowledge about the cache miss reasons. During the last decades, cache

miss analysis is in the focus of computer architecture research. Dubois et al. [DSR+93]

present an approach towards cache miss estimation on multi-processor systems. Their

work defines cache miss metrics assuming infinite caches. Consequently, the caches need

no replacement strategy and reveal no conflict or capacity misses. Under these circum-

stances, their Pure True Sharing Misses are the same as the true sharing misses and

the true sharing invalidation misses (definitions are given in section 3.1.1). Beyls and

D’Hollander [BD01] introduce the reuse distance as a concept for cache miss estimation.

This work implements the reuse distance concept and uses it to distinguish between cold,

conflict and capacity misses. Jeremiassen and Eggers [JE95] demonstrate how compiler

techniques avoid false sharing misses. The techniques identify shared data and use padding

to extend it to the full cache line size.

Our approach combines the methodologies of the first and the second work. Similar to

the first work, we consider multi-processor systems and, hence, also calculate coherence

misses. Furthermore, we incorporate the cache metrics of the second work to target real-

istic cache architectures. An accurate algorithm was designed for this computation.

3 The Cache Model

The base of the analysis model is a cache event trace that records every cache event. The

g-cache module of SIMICS generates this event trace. The parse simics conf tool captures

the cache configuration and delivers it to the analysis tool. The analysis tool processes

every cache event and classifies the misses.

For accuracy and flexibility we used SIMICS to provide the cache event trace. SIMICS

is an efficient and instrumented system level instruction set simulator [Rev06]. SIMICS

60

simulates the hardware running the operating system and the application. Caches are con-

figurable modules called g-cache.

3.1 Tool Chain

SIMICS

g-cache module

cache event trace

parse simics conf

traces for
 YACO

sharing miss
classification

analysis
model

Figure 1: Tool chain interfacing with SIMICS.

Figure 1 depicts the interface between SIMICS and the developed tool, where the left side

represents the simulation environment and the right side shows our own work. The g-cache

module of SIMICS was slightly modified in order to capture the cache events, which are

written to a trace file. Each cache event is processed by the analysis model. For this task

the analysis model also needs the cache configuration parameters which have been used

by SIMICS to generate the trace. This information is delivered by the parse simics conf -

tool. The main work of the analysis model is to find out the reason of each cache miss.

A statistical output is delivered to the user for comparing the cache behaviour of different

configurations. Analysis results are also recorded in traces required by the existing visual-

isation tool YACO. The visualisation presents the analysis results in a user-understandable

way. This helps the programmer to detect access bottlenecks and optimisation strategies.

3.1.1 Cache Miss Categories

Traditionally, cache misses are classified as cold, conflict and capacity misses [HS89].

Cold misses are caused by the first reference. Capacity misses occur when the cache is

smaller than the working set size, while conflict misses occur due to mapping conflicts.

For multi-processor machines the coherence problem has to be solved - this results in

coherence misses. When many processors execute an application, data are shared. A write

invalidate protocol invalidates the modified, shared data, thus, causing cache misses. To

see whether the invalidation is necessary, the sharings are differentiated in true sharing (at

least two processors access the same data) and false sharing.

A sharing miss is defined straightforwardly as a miss occurring on an address having a

block address which has been shared. True sharing misses are an inevitable effect of

parallel execution. However, false sharing misses shall be eliminated. Sharing misses are

typically identified by examining whether the miss is caused by an earlier invalidation.

61

Actually, this calculation is not exact, because the replacement strategy might replace the

line before the miss. Then the miss must be attributed to the replacement strategy and not

classified as a coherence miss. This leads to our refined definition of coherence miss:

true sharing invalidation miss (tsim): true sharing miss that would not have been

replaced by the local replacement strategy before the miss.

false sharing invalidation miss (fsim): analogue to the true sharing invalidation miss.

3.1.2 Miss Classification Implementation

In order to classify each cache miss, the cache event trace is processed. The following

subsections give a short description on the implementation of the algorithms.

Recognization of Cold Miss

Each processor records every access to a memory address in a linked list. Subsequently,

the first access to a block address is not found in this list. Therefore, this block address has

not been accessed before by the corresponding processor. Hence, a cold miss is detected.

Detecting Conflict and Capacity Miss

Introduced in [BD01], the reuse distance is the concept to distinguish conflict and capacity

misses. It is defined as the number of unique block addresses between two references to

the same block. We implemented the reuse distance as follows. Every block address

is associated with a reuse distance counter and a time stamp with the date of the last

reference. Every time a miss occurs, the linked list is traversed and the time stamps of

the last reference of the entries and the time stamp of the last reference of the miss are

compared. If the time stamp of the entry is greater than the time stamp of the miss, the

entry’s reuse distance counter is increased by one. This is done because the last reference

to the miss occurred before the last reference to the entry. Therefore, the block address of

the miss is distinct from the other block addresses accessed since the last reference to the

block address of the list entry.

The classification of conflict and capacity miss compares the reuse distance counter of the

miss. If the reuse distance counter is smaller than the number of cache lines, the miss is a

conflict miss. Otherwise, the miss is a capacity miss.

Sharing Invalidation Miss

For recognising the sharing invalidation miss, we apply another definition: set reuse dis-

tance. Based on the reuse distance, the set reuse distance is also the number of unique

block addresses between two accesses to the same block, but only blocks mapped to the

same set with the observed address are counted. This value is used to exclude misses that

are caused by the replacement strategy of the cache.

If a miss is perceived on a sharing, the set reuse distance of that block address is compared

to the number of lines in the set (associativity). If the associativity is equal or less than the

set reuse distance, then this block address would already have been replaced by the LRU

62

t 0 t invalidation t miss t evict

time

Figure 2: Timeline illustrating the sharing invalidation miss.

strategy, resulting in a conflict or capacity miss. Otherwise, a sharing miss is detected

because the replacement strategy would not have evicted this block address. Figure 2

illustrates the sharing invalidation miss. The following terms are applied:

• t0 represents the last reference to this block address which resets the reuse distance

and the set reuse distance instances of this block address. Afterwards, for every

different block address referenced, the reuse distance is increased by one and if the

block belongs to the same set the set reuse distance is accumulated as well.

• tinvalidation represents the time of the invalidation. The sharing of the block address

is classified and saved.

• tmiss represents the time at which a miss occurs on that block address.

• tevict is the point in time, where the LRU strategy would have replaced this block

address.

If tmiss >= tevict, a replacement strategy miss is detected, because the associativity is

equal or less than the set reuse distance. On the contrary, if tmiss < tevict, which cor-

relates with the set reuse distance being less than the associativity, a sharing invalidation

miss is detected (Figure 2).

4 Evaluation

Parameter Value

L1 Line Size 32 Bytes

L1 Associativity 2-way

L1 Replacement Policy Least Recently Used

L1 Write Policy Write Through

L1 Allocate Policy Write Allocate

L2 Line Size 32 Bytes

L2 Associativity 4-way

L2 Replacement Policy Least Recently Used

L2 Write Policy Write Back

L2 Allocate Policy Write Allocate

Parameter private L2 shared L2

Number of Processors 8 8

L1 Number of Caches 8 8

L1 Size (each) 4 KBytes 4 KBytes

L1 Number of Lines 128 128

Coherency Protocol MESI MESI

L2 Number of Caches 8 1

L2 Size (each) 128 KBytes 1024 KBytes

L2 Number of Lines 4096 32768

Coherency Protocol MESI None

Table 1: Common cache parameters (left) and case specific parameters for 8 processors (right).

In order to verify the functionality, the cache analysis model has been evaluated using the

SPLASH-2 benchmark suite. This section first briefly describes the benchmarks and the

results obtained with the multi-processor configuration. Then we show a sample view of

the visualisation.

63

4.1 Results with SMP-architectures

For evaluating the analysis model and achieving valuable conclusions for cache optimisa-

tion, several experiments have been conducted. Throughout these experiments, the caches

are configured as shown in Table 1. This setup allows for examining the SPLASH-2

Benchmark Suite [spl] towards scaling performance on SMP-architectures. SPLASH-2

aims at evaluating cache-coherent shared memory architectures. In order to adapt the

SPLASH-2 programs to the x86 architecture and SIMICS the hints given by [Bar, Hei]

are performed. The m4 macros [Sto], developed by Bastian Stougie [Sto03], are used to

parallelise the benchmark.

Corresponding to the existing and emerging multi-processor cache designs, this experi-

ment examines different structures of the level 2 cache(s), private (each processor has an

exclusive level 2 cache) and shared (one level 2 cache for all processors). Table 1 de-

picts the applied configuration, with the left side for the common parameters and the right

side for the L2 specific one (a sample configuration with 8 processors). This work, as

well as many other studies concerning cache miss estimation, uses normalised miss rates:

missrate = misssum

accesssum∗number of processors
.

4.1.1 Overall Performance

Figure 3: Miss rates grouped by SPLASH-2 programs.

Figure 3 shows the overall miss rate of the benchmarks simulated with 2, 4 and 8 proces-

sors. Two adjacent bars belong to the same number of CPUs, the left bar gives the miss

ratio for privately owned caches, whereas the right bar refers to the shared case. Surpris-

ingly, for all applications with all processor numbers the shared level 2 cache yields better

performance. The improvements of a shared level 2 cache over private level 2 caches, cal-

culated by,
missprivate−missshared

missprivate
, range from 9% (LU with continuous blocks measured

using 2 CPUs) up to 89% (LU with non continous blocks using 2 CPUs).

64

For a better understanding of the reasons for the observed results, the misses are further

classified (according to section 3.1.1).

4.1.2 Miss Characteristics

The analysis model computes accurately the number of misses in each miss category. This

allows us to observe the cause of every cache miss. Figure 4-6 show sample results with

the cholesky, the water-n2, and the lu with non continuous blocks programs.

Figure 4: cholesky program for shared and private level 2 caches.

Cholesky

The cholesky program performs a matrix decomposition using the numerical cholesky

method [WOT+95]. As shown in Figure 4, the reduced cold and capacity miss rates mainly

contribute to the better performance with shared level 2 caches. The conflict misses, on the

other hand, decrease the performance of the shared level 2 caches on 4 and 8 processors.

Figure 5: Water n2 benchmark for shared and private level 2 caches.

Water-n2

The water-n2 benchmark simulates a multi dimensional body [WOT+95]. As shown in

65

Figure 5, the private caches show disadvantageous behaviour concerning the number of

coherence misses and the increasing capacity miss ratio, which rises from ∼0% to 0,11%.

According to [WOT+95], the second working1 set exceeds the capacity of the private

caches. As the private caches become smaller the more processors are used, while the

data set size stays the same, the second working set does not fit in the caches, resulting

in capacity misses. In the shared cases the second working set does not exceed the cache

capacity, as capacity misses do not occur. Additionally, cold and conflict misses are also

decreased with the shared cache.

Figure 6: LU with non continuous blocks benchmark for shared and private level 2 caches.

LU with non continuous blocks

LU with non continuous blocks performs a matrix decomposition using the LU factorisa-

tion. As shown in Figure 6 the only perceived misses using a shared second level cache

are cold misses with a miss rate of around 0,35%. The private case is dominated by co-

herence misses, precisely false sharing invalidation misses, that yield rates between 2,27%

and 2,98%. The true sharing invalidation miss rate is between 0,08% and 0,32%. Thus,

a wrong cache line size is indicated. Compiler techniques, padding data to full cache line

sizes, are indicated to prevent false sharing invalidation misses. Capacity misses are not

detected, which is due to the small benchmark working set size.

Improved Cache Configuration

The analysis of the cholesky and the water-n2 benchmarks reveals conflict misses. In order

to reduce the conflict misses and improve the performance, we increased the level 2 cache

associativity from 4-way to 8-way set-associative and repeated the simulation. The results

of the water-n2 program are shown on the left hand side of Figure 7 and the cholesky

program on the right hand side. The cache miss rate of the water-n2 program improves

by at least 5.3% (4 CPUs with private caches) whereas the cholesky program improves by

at least 1.5% (8 CPUs with private caches) compared to the 4-way set-associative level 2

caches. The increased associativity has a greater effect on the shared level 2 caches as the

1working set 2 corresponds to the second knee of the function in cache size and miss rate

66

Figure 7: Water n2 (left) and cholesky (right) with 8-way set-associative level 2 caches.

conflict misses make up a larger fraction of the overall miss rate. Therefore, the miss rate

benefits more from the decreased number of conflict misses.

Summary

Overall, the shared architecture generally benefits from less cold and capacity misses. The

former can be explained by the fact that shared data only causes one cold miss with the

processor first accessing it. For the latter a larger cache is available for the working set.

In addition, shared caches have no coherence misses. Further, the analysis tool is shown

to be useful. As expected, increasing the cache associativity causes the number of conflict

misses to decrease.

4.2 Visualisation

The analysis results can also be applied to understand the cache and program access pattern

and further achieve an optimised application. For this, YACO is used for representing

the results. YACO [QTK05] is a cache visualisation tool specifically designed for cache

optimisation. It uses a set of several graphical views to guide the user to detect the problem,

the reason, and the solution.

Figure 8 is a sample view used to highlight cache critical variables, i. e. the access bot-

tlenecks. The simplicity of the graphical representation helps the programmer to clearly

identify the bottlenecks throughout program execution. The relation between the name

and the miss rate points the programmer to the variables worth optimising. The fft pro-

gram shows that except umain all other main data structures have to be optimised. In the

next step, programmers can use YACO’s data access and cache views to analyse the access

pattern and further to detect the optimisation strategies. Optimisation examples are found

in [QTK05].

67

Figure 8: YACO’s misses per variable.

5 Conclusion

This work uses an analysis approach to investigate the feature of cache misses on multi-

processor machines. The g-cache module of SIMICS is used to create a cache event trace.

A miss classification model is applied to the cache event trace in order to distinguish cold,

conflict, capacity, and sharing invalidation misses. A component for generating traces

of performance facts, which can be delivered to an existing visualisation tool for graphi-

cal presentation of cache bottlenecks, is implemented as well. The following results are

achieved. For all considered benchmarks the shared level 2 cache is the better choice as it

improves the cache miss rate. The overall advantage of the shared level 2 cache is the lack

of coherence misses.

The best example for an improved cache miss rate by eliminating coherence misses is the

lu with non continuous blocks benchmark. The coherence misses reveal the false sharing

of cache lines.

Other programs as the water-n2 yield better miss rates in the shared case, because the

working set size exceeds the private caches resulting in a higher capacity miss rate.

The results obtained from the cholesky program indicate that the most benefit is drawn

from an increased cache size, as the coherence miss rates are negligible. In the shared

68

cases conflict misses are visible. As shown in section 4.1.2 a higher cache associativity

reduces the conflict misses and increases the performance.

Section 4.2 and section 4.1.2 show how the developed tool can guide the user to an im-

proved adjustment of application and cache.

References

[Bar] Ken Barr. http://kbarr.net/splash2.html. Online; accessed January 2, 2008.

[BD01] K. Beyls and E. D’Hollander. Reuse distance as a metric for cache behavior. In PDCS
’01: Proceedings of the Conference on Parallel and Distributed Computing and Sys-
tems, pages 617–662, August 2001.

[DSR+93] M. Dubois, J. Skeppstedt, L. Ricciulli, K. Ramamurthy, and P. Stenström. The Detec-
tion and Elimination of Useless Misses in Multiprocessors. In Proceedings of the 20th
International Symposium on Computer Architecture, San Diego, CA, 1993.

[Hei] Wim Heirman. http://trappist.elis.ugent.be/˜wheirman/simics/splash2/. Online; ac-
cessed January 2, 2008.

[HS89] M. D. Hill and A. J. Smith. Evaluating Associativity in CPU Caches. IEEE Trans.
Comput., 38(12):1612–1630, 1989.

[JE95] Tor E. Jeremiassen and Susan J. Eggers. Reducing false sharing on shared memory mul-
tiprocessors through compile time data transformations. In PPOPP ’95: Proceedings
of the fifth ACM SIGPLAN symposium on Principles and practice of parallel program-
ming, pages 179–188, New York, NY, USA, 1995. ACM Press.

[QTK05] B. Quaing, J. Tao, and W. Karl. YACO: A User Conducted Visualization Tool for
Supporting Cache Optimization. In HPCC ’05: High Performance Computing and
Communications: First International Conference, volume 3726 of Lecture Notes in
Computer Science, pages 694–703. Springer, September 2005.

[Rev06] Virtutech AB, Nortullsgatan 15, SE-113 27 STOCKHOLM, Sweden. Simics User
Guide for Unix, February 2006. Simics Version 3.0.

[spl] SPLASH-2: Stanford Parallel Applications for Shared Memory. http://www-
flash.stanford.edu/apps/SPLASH/. Online; accessed January 2, 2008.

[Sto] Bastiaan Stougie. http://kbarr.net/files/splash2/pthread.m4.stougie. Online; accessed
January 2, 2008.

[Sto03] Bastiaan Stougie. Optimization of a Data Race Detector. Master’s thesis, Delft Univer-
sity of Technology, October 2003.

[WOT+95] Steven Cameron Woo, Moriyoshi Ohara, Evan Torrie, Jaswinder Pal Singh, and Anoop
Gupta. The SPLASH-2 programs: characterization and methodological considerations.
In ISCA ’95: Proceedings of the 22nd annual international symposium on Computer
architecture, pages 24–36, New York, NY, USA, 1995. ACM Press.

69

Parallel derivative computation using ADOL-C

Andreas Kowarz, Andrea Walther

{Andreas.Kowarz, Andrea.Walther}@tu-dresden.de
Institute of Scientific Computing, Technische Universität Dresden

01062 Dresden, Germany

Abstract: Derivative computation using Automatic Differentiation (AD) is often con-
sidered to operate purely serial. Performing the differentiation task in parallel may re-
quire the applied AD-tool to extract parallelization information from the user function,
transform it, and apply this new strategy in the differentiation process. Furthermore,
when using the reverse mode of AD, it must be ensured that no data races are intro-
duced due to the reversed data access scheme. Considering an operator overloading
based AD-tool, an additional challenge is to be met: Parallelization statements are typ-
ically not recognized. In this paper, we present and discuss the parallelization approach
that we have integrated into ADOL-C, an operator overloading based AD-tool for the
differentiation of C/C++ programs. The advantages of the approach are clarified by
means of the parallel differentiation of a function that handles the time evolution of a
1D-quantum plasma.

1 Introduction

Automatic differentiation (AD) is a technique that has been developed and improved in the

last decades. It allows to compute numerical derivative values within machine accuracy

for a given function of basically unlimited complexity. Thus, unlike finite differences, no

truncation errors must be taken into account. When calculating first order derivatives using

the forward mode of AD, i.e., determining Jacobian-vector products, the computational

effort is comparable to that of finite differences. This way, e.g., columns of the Jacobian

can be computed efficiently. However, if a vector-Jacobian product is to be computed, e.g.,

a specific row of the Jacobian, the computational effort is proportional to the number of

entries in the row when applying finite differences. The same task can be performed much

more efficiently by use of the reverse mode of automatic differentiation. In particular,

the computational effort is then independent of the rows dimension. A comprehensive

introduction to AD can be found in [Gri00].

To provide reverse mode differentiation, AD tools based on operator overloading need to

create an internal representation of the function F : IRn → IRm, y = F (x), to be dif-

ferentiated, where x = XI denotes the set of independent variables and y = Y D the

set of dependent variables. The internal representation can be based on graphs [BS96] or

sequential tapes. ADOL-C is an operator overloading based tool that provides automatic

differentiation for functions given as C/C++ source code [GJU96]. The internal repre-

70

sentation of the considered function is created using a taping mechanism and a so-called

augmented data type adouble that replaces double variables. Such a mechanism can

be found in many AD-tools offering reverse mode differentiation based on operator over-

loading. Essentially, only the function value is computed within the overloaded operator or

intrinsic function, respectively. In addition, information exactly describing the operation

is recorded onto a tape. This information comprises the type of the operation/function,

e.g. MULT, SIN, etc., as well as representations of the involved result and arguments,

represented by so-called locations. After the evaluation of the function, the created tape

represents the computational graph of the function as the sequence of operations that have

been processed, in execution order. Based on this information, the program flow sequence

can be easily inverted by interpreting the tape in reverse order.

Taking into account the steadily increasing demand for parallel program execution, an ap-

proach has to be found that allows to utilize the parallelization strategy of the provided

user function for parallelizing the derivative computation. When ADOL-C is to be applied

in a parallel environment that is created using OpenMP, several challenges have to be met.

Firstly, the created tapes do not contain any information describing the parallel evalua-

tion of the considered function. This is due to the fact that OpenMP statements cannot be

overloaded. Furthermore, if all threads of the parallel environment would write onto the

same tape, the serialization of the program flow would be inevitable, and, moreover, write

conflicts would be very likely. Secondly, when computing derivative information applying

the reverse mode of AD, the data access behavior is also reversed, i.e., read accessed func-

tion variables turn into write accessed derivative variables and vice versa. This potentially

results in data access races.

In this paper, we present parallelization strategies that have been incorporated into the

AD-tool ADOL-C. We mainly concentrate on the parallel reverse mode of AD but also

give information on the new features that allow a parallel tape based forward mode. In

the following section, a short overview of the facilities for generating a parallel AD-

environment inside ADOL-C is given. Special issues for parallel reverse mode differ-

entiation are discussed in Section 3 whereas Section 4 is dedicated to a numerical example

which demonstrates the runtime advantages that can be achieved by applying the parallel

reverse mode. A short summary and an outlook complete this paper.

2 Extensions to the ADOL-C

ADOL-C has been developed over a long period of time under strict sequential aspects.

Although the generated tapes have been used for a more detailed analysis and the con-

struction of parallel derivative code, e.g., [Bis91], ADOL-C could hardly be applied out of

the box within a parallel environment, so far. The most convenient chance in this context

is given by the use of ADOL-C in a message passing system based on distinct processes

for all cooperators. This requirement is fulfilled by, e.g., MPI [HW99]. Due to separated

address space and the realization of cooperators as processes of the operating system, the

ADOL-C environment is multiplied. In particular, all control variables used in ADOL-C

are available within each process exclusively. From the users point of view, only two

71

conditions must be met to allow a successful application of ADOL-C. First, the unique-

ness of the created tape name, also called tag, must be ensured. This can be achieved by

carefully choosing the tag, e.g., in dependence of the process’ rank. Second, it must be

considered that data transfer between the working processes is not reflected by the internal

representation created by ADOL-C. Then, ADOL-C may be applied as usual allowing

the computation of derivatives for functions that implement data partitioning techniques,

especially when only a limited degree of communication is necessary.

Many parallel applications rely on a high amount of synchronization to communicate

computed information at given points among involved cooperators. In a message pass-

ing environment this would also mean to invoke more or less expensive transfer routines.

Therefore, such applications are typically parallelized for a shared memory environment

using OpenMP [DM98]. Extensive enhancements have been added to ADOL-C to allow

the application in such cases. Originally, the location of an augmented variable is assigned

during its construction utilizing a specific counter. Creating several variables in parallel

results in the possibility to loose the correctness of the computed results due to a data race

in this counter. Initial tests based on the protection of the creation process by use of critical

sections showed unambiguous behavior. Even when using only two threads in the parallel

program, the runtime increased by a factor of roughly two rather than being decreased.

For this reason, a separate copy of the complete ADOL-C environment is provided for

every worker thread. The copy mechanism can be implemented using two different ways,

either based on the OpenMP threadprivate clause, or by utilizing the thread number.

Possible effects of the chosen strategy are discussed in Section 4.

Besides this decision, another issue had to be answered. As already identified by G. M. Am-

dahl [Amd67], every parallel program possesses a certain fraction that can only be handled

serially. In many situations not only the parallel part of the function is object to the deriva-

tion efforts but also the serial parts. This entails the question of how to transfer information

between the serial and parallel program segments and vice versa.

From serial to parallel
Data transfer is this direction can be performed quit easily. For all variables alive at

the moment when the parallel region starts, a copy may be created for each thread.

From parallel to serial
This is the more difficult direction as it requires to decide which values from which

thread should be copied to the serial part. Furthermore, the handling of variables

created within the parallel part must be solved.

For the current implementation, the following decisions have been made.

• The handling of parallel regions by ADOL-C comprises only augmented variables

but not user variables of standard data type.

• Control structures utilized by ADOL-C are duplicated for each thread, and are de-

fault initialized during the first creation of a parallel region. The values of these

control variables are then handed on from parallel region to parallel region.

72

• For performance reasons, two possibilities of handling the tape information have

been implemented. In the first case, control information including the values of

augmented variables are transferred from the serial to the parallel variables every

time a parallel region is created. Otherwise, this process is invoked only during the

creation of the first parallel region. In either case, the master thread creates a parallel

copy of the variables for its own use.

• No variables are copied back from parallel to serial variables after completion of

a parallel region. This means, results to be preserved must be transferred using

variables of standard data type.

• The creation or destruction of a parallel region is not represented within the initiating

tape. Coupling of serial and parallel tapes must therefore be arranged explicitly by

using the construct of external differentiated functions, see [Kow08].

• Different tapes are used within serial and parallel regions. Tapes begun within a

specific region, no matter if serial or parallel, may be continued within the following

region of the same type.

• Tapes created during a serial region can only be evaluated within a serial region.

Accordingly, tapes written during a parallel region must be evaluated there.

• Nested parallel regions are not supported and remain object to later enhancements.

All in all, the described facts result in augmented variables with a special property that

depends on the specific handling of the tape information. With the start of a new parallel

region either a threadprivate or a firstprivate behavior, respectively, is simulated, [DM98].

This means that the value of the augmented variable is taken either from the previous

parallel region or from the serial region, respectively. In either case, the value used within

the parallel region is invisible from within the serial region.

Initializing the OpenMP-parallel regions for ADOL-C is only a matter of adding a macro

to the outermost OpenMP statement. Two versions of the macro are available, which are

only different in the way the tape information is handled. Using ADOLC OPENMP, this

information including the values of the augmented variables is always transferred from

the serial to the parallel region. In the other case, i.e., using ADOLC OPENMP NC, this

transfer is performed only the first time a parallel region is entered. This reduces the copy

overhead for iterative processes. Due to the inserted macro, the OpenMP statement has

the following structure:

#pragma omp ... ADOLC OPENMP
or

#pragma omp ... ADOLC OPENMP NC

Within a parallel region, different tapes are created by the threads. Succeeding the tap-

ing phase, derivatives are computed using the various tapes. This can be done either by

complete user steering, or semi-automatic by applying the concept of extern differentiated

functions.

73

While forward mode differentiation is, in a way, straightforward, the computation of

derivatives utilizing the reverse mode of AD needs special attention.

3 Reverse mode for data parallelism

For parallel reverse mode differentiation, we focus on functions that feature a special type

of data parallelism. Basically, data parallelism describes the subdivision of the data do-

main of a given problem into several regions. These regions are then assigned to a given

number of processing elements, which apply the same tasks to each of them. Data paral-

lelism is commonly exploited in many scientific and industrial applications and exhibits a

“natural” form of scalability. Since the problem size for such applications is normally ex-

pressed by the size of the input data to be processed, an upscaled problem can typically be

solved using a correspondingly higher number of processing elements at only a modestly

higher runtime [DFF+03].

For our purpose, data parallelism is extended beyond the pure nature described above.

Accordingly, it shall be allowed that the complete set of independent variables XI of the

given function F may be used by all p processing elements PEi, i = 1, . . . , p, for reading.

Denoting by XI
(i)
r and XI

(i)
w the read and write accessed subsets of XI , respectively, for

the various processing elements, one has that

∀PEi : XI(i)
r ⊆ XI, XI(i)

w = ∅. (1)

This allows for example parallel functions that handle the evolution of systems consisting

of many components. There, computations for the individual components can be per-

formed independently, provided that the interaction among them can be determined using

XI . Derivative information for such applications can be provided using the scheme de-

picted in Figure 1. In contrast to the general read access in terms of the independents,

p
ro

g
ra

m
in

it
ia

li
za

ti
o
n

d
at

a
al

lo
ca

ti
o
n

A
D

fi
n
al

iz
at

io
n

p
ro

g
ra

m
fi

n
al

iz
at

io
n

PE 1: forward sweep PE 1: reverse sweep

PE 2: forward sweep PE 2: reverse sweep

...
...

PE p: forward sweep PE p: reverse sweep

Time

Figure 1: Basic layout of data-parallel calculations in an AD-environment

write access may only be allowed for distinct subsets Y D(i) of the dependent variables.

For a given number p of processing elements it is required that

Y D =
p⋃

i=1

Y D(i) and Y D(i) ∩ Y D(j) = ∅ with i, j ∈ [0, p], i �= j.

74

The set of intermediate variables IV (s) associated with the serial function evaluation is

considered to be reproduced for all processing elements yielding p sets of variables IV (i),

i = 1, . . . , p. In this way, intermediate values can be used at the certain processing element

without the potential of memory conflicts. Overall, considering the subset Y D(i) and the

set of intermediate variables IV (i), which are used exclusively by the processing elements

PEi, it holds that

∀PEi ∀PEj :
{

Y D(i) ∩ Y D(j) = ∅ IV (i) ∩ IV (j) = ∅ for i �= j
Y D(i) = Y D(j) IV (i) = IV (j) for i = j

. (2)

Any function exhibiting the properties (1) and (2) is considered correctly parallelized in

the sense that data races are debarred.

Obviously, equation (2) allows to compute derivatives for the given function as long as

only the sets IV (i) and Y D(i) are involved. Due to the distinct nature of the sets defined

for the processing elements, forward and reverse mode of AD can be applied safely. A less

obvious situation is given as soon as independent variables are involved in the computation.

As known from the theory of the reverse mode, read accessed function variables result in

write accessed derivative variables. More precisely, the following relation holds

Function Derivative (reverse mode)

vi = ϕi(vj)j≺i v̄j+= v̄i ∗ ∂ϕi(vj)j≺i

∂vj
∀j ∈ {j : j ≺ i}.

Therein, the term ϕi(vj)j≺i denotes an elemental operation or intrinsic function to com-

pute an intermediate value vi, and ≺ refers to the dependency relation as defined in

[Gri00]. As can be seen, due to the required instructions in the reverse mode, the data

access layout of the function variables is reversed for the adjoint variables v̄i and v̄j asso-

ciated with each intermediate variable vi and vj , respectively. Hence, read accesses on the

independent variables xk, k = 1, . . . , n, induce the potential of data races in the adjoint

computations.

However, similar to the handling of intermediate variables, different sets of adjoint vari-

ables XI (i) can be provided for each processing element corresponding to the set XI .

Adjoint values may then be updated locally by each processing element independently

and thus globally in parallel. Due to the additive nature of the derivative computations,

global adjoint values may later be assembled using the local information produced by the

various processing elements. As this assembling results in significant computational effort,

it should be executed for all relevant adjoints only once and in a single step. Thus, the as-

sembling step must be performed after the last update of an adjoint variable x̄
(i)
k ∈XI (i).

However, updates of adjoints x̄
(i)
k are principally possible at any point of the reverse com-

putations. This results from the property of the function that independent variables may be

accessed at any given time of the function evaluation. Thus, a single adjoint assembling

step is only possible if no x̄
(i)
k is used as an argument of a derivative instruction before all

updates on the set XI (i) have been performed. For the considered type of applications

that feature the properties (1) and (2), this potential conflict can never occur. Since the

individual independent variables are accessed for reading only, they cannot appear on the

75

right-hand side of an derivative instruction. Hence the assembling phase that computes the

global derivative values can be safely moved to the end of the derivation process.

4 Numerical Example

The example that is used to demonstrate the parallel derivation of a given function is taken

from physics. Due to its complex structure it is also necessary to apply in addition to

the parallelization other techniques derived in [Kow08], in particular, nested taping, exter-

nal differentiated functions, and checkpointing facilities. Only the combination of these

techniques allows the derivation based on the reverse mode of AD for this example. The

implementation of the function was performed by N. Gürtler [Gür06], and the differentia-

tion was realized in a cooperation between the RWTH Aachen and the TU Dresden. To our

knowledge, the parallel derivation of the given function including the coping with the high

internal complexity and inherent challenges currently features uniqueness and establishes

a new level of the application of operator overloading based AD.

The example describes the time propagation of a 1D-quantum plasma. Therein, the plasma

particles can be represented by a N -particle wave function Ψ(1, . . . , N), and the system is

modeled by multi-particle Schroedinger equations. For reduction of the complexity, spin

effects are neglected. However, a direct solution is numerically highly expensive. Since

an approximation is often sufficient to describe the physical behavior, the simulation is

based on Quantum-Vlasov equations. Interchange and correlation effects are neglected.

As an entry point into quantum plasma simulations and for reasons of complexity only

the one-dimensional case is modeled. However, due to the necessary discretization in the

order of N dimensions, the direct solution is still very expensive. For the analysis of

expected values for many distributions, calculations based on a representative ensemble

of quantum states are sufficient. Prior to the numerical simulation, a discretization of the

resulting equation system is performed. Applying cyclic boundary conditions yields the

sparse cyclic tridiagonal system (3).

U+,n+1
i Ψn+1

i = U−,n
i Ψn

i (3)

For details on the discretization and the definition of the operator U , the reader is referred

to [Gür06, Gür07]. With a system like (3), a complete description of the time propaga-

tion of the discretized wave function Ψ is given. Therein, the term Ψn
i denotes the wave

function of the ith particle at time n.

The final step, which succeeds the time propagation of the plasma is used to compute the

expected value < η > of the particle density. The discrete version of this target functions

is given by

< η >=
N∑

i=1

K∑

j=1

z(j)∆z|Ψi,j |2 . (4)

The reduction of the high amount of output information resulting from the time propaga-

tion to a single value allows an easier evaluation of the entire system.

76

A code for simulating the time propagation of a one-dimensional ideal quantum plasma

has been developed [Gür06]. It creates the source of the differentiation efforts and features

the program layout that is depicted in Figure 2. There, all parallelization statements are al-

...
startup calculation(..);
for (n = 0; n < T; ++n) {

#pragma omp parallel
{

#pragma omp for
for (i = 0; i < N; ++i)

part1(..);
#pragma omp for
for (i = 0; i < N; ++i)

part2(..);
}

}
target function(..);
...

Figure 2: Basic layout of the plasma code including parallelization statements

ready included. The representation is based on C++ notation, and the OpenMP statements

are adjusted accordingly. Due to the layout of the overall function, the reverse mode of

AD is to be preferred for the differentiation of the code.

For the proof of concept of the code as well as its derivation, we used the following pa-

rameters for all runtime measurements that are discussed in this section.

• number of wave functions N = 24, simulation time t = 30, T = 40000 time steps

• length of the simulation interval L = 200, discretized with K = 10000 steps

• plasma frequency ωP = 1.23

All units are transformed to the atomic scale, see [Gür06]. The most important runtime

reduction in the simulation results from computing only the first 50 of the 40000 time

steps. After this period, the correctness of the derivatives can already be validated and

the characteristics of the runtime behavior that are of special interest are already fully

visible. To preserve the numerical stability of the code, the time discretization is based on

T = 40000 steps nevertheless. All runtime measurements have been performed using the

SGI ALTIX 4700 system installed at the TU Dresden.

Two versions of parallel derivative computations are discussed in the remainder of this

section. They apply the same parallelization approach, i.e., every participating thread of

77

the parallel environment performs all calculations for a specific number of the consid-

ered N wave functions. The main difference is to be found in the way the data access

in the parallel environment is performed. Figure 3 depicts the speedups measured for

the derivation of 24 wave functions. As can be seen, the code version that is based on

Figure 3: Speedups for the parallel differentiation of the plasma code for N = 24 wave functions

a threadprivate parallelized AD-environment achieves the highest speedups. Fur-

thermore, it performs much better than thread number based reverse version, and it even

outperforms the speedup of the original functions. This allows the conclusion that, care-

fully implemented, the derivative calculations can decrease the distracting effect of the

necessary synchronization within the parallel environment.

The results attained through the parallelization of the differentiation of the plasma code

clarify that operator overloading based AD is prepared to meet the challenges that are

brought up by the most complex codes applied in science and engineering. Thus, for the

parallelization of derivative calculations using operator overloading AD, an answer has

been found to a question that is still open for many other applications.

5 Summary & outlook

Automatic differentiation based on operator overloading features a long history and has

shown to be highly valuable for most derivation tasks. Especially for programming lan-

guages for which AD-enabled compilers are not available or miss a critical feature, the

operator overloading based approach often presents the only reasonable technique. The

increasing complexity of the investigated functions more and more requires the applica-

tion of parallelization techniques. It is obvious that automatic differentiation must face

this fact and provide adequate differentiation strategies. In this paper, we presented new

parallelization approaches that have been incorporated into the tool ADOL-C. By means

of the time propagation of a 1D quantum plasma we could show that parallel reverse mode

differentiation can be performed efficiently using operator overloading based AD.

78

The main limitation of AD utilizing the overloading facilities of programming languages

is always to be found in the size of created internal function representation. Within this

context, the unrolling of loops presents a major drawback that may result in an unfavorable

runtime behavior. Hence, one of the main challenges to be answered in the future is the

development of techniques that allow a much more compact representation of loops. This

not only avoids the expensive storing of every loop iteration, but also presents a major step

towards an automatic parallel differentiation of parallelized user functions.

References

[Amd67] G. M. Amdahl. Validity of the single processor approach to achieving large scale com-
puting capabilities. volume 30 of AFIPS conference proceedings, pages 483–485, Na-
tional Press Building, Washington, D.C. 20004, USA, 1967. Thompson Book Co. Spring
joint computer conference, Atlantic City.

[Bis91] C. H. Bischof. Issues in Parallel Automatic Differentiation. In A. Griewank and G. F.
Corliss, editors, Automatic Differentiation of Algorithms: Theory, Implementation, and
Application, pages 100–113. SIAM, Philadelphia, PA, 1991.

[BS96] C. Bendtsen and O. Stauning. FADBAD, a Flexible C++ Package for Automatic Dif-
ferentiation. Technical Report IMM–REP–1996–17, Department of Mathematical Mod-
elling, Technical University of Denmark, Lyngby, Denmark, 1996.

[DFF+03] J. Dongarra, I. Foster, G. Fox, W. Gropp, K. Kennedy, L. Torczon, and A. White, editors.
Sourcebook of Parallel Computing. Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA, 2003.

[DM98] L. Dagum and R. Menon. OpenMP: An Industry-Standard API for Shared-Memory
Programming. IEEE Computational Science and Engineering, 05(1):46–55, 1998.

[GJU96] A. Griewank, D. Juedes, and J. Utke. Algorithm 755: ADOL-C: A Package for the Au-
tomatic Differentiation of Algorithms Written in C/C++. ACM Transactions on Mathe-
matical Software, 22(2):131–167, 1996.

[Gri00] A. Griewank. Evaluating Derivatives: Principles and Techniques of Algorithmic Dif-
ferentiation. Number 19 in Frontiers in Applied Mathematics. SIAM, Philadelphia, PA,
2000.

[Gür06] N. Gürtler. Simulation eines eindimensionalen idealen Quantenplasmas auf Parallelrech-
nern, 2006. Diploma thesis in physics, Rheinisch-Westfälische Technische Hochschule
(RWTH) Aachen, Germany.

[Gür07] N. Gürtler. Parallel Automatic Differentiation of a Quantum Plasma Code, 2007.
Diploma thesis in computer science, Rheinisch-Westfälische Technische Hochschule
(RWTH) Aachen, Germany.

[HW99] R. Hempel and D. W. Walker. The Emergence of the MPI Message Passing Standard for
Parallel Computing. Computer Standards & Interfaces, 21:51–62, 1999.

[Kow08] A. Kowarz. Advanced Concepts of Automatic Differentiation based on Operator Over-
loading. PhD thesis, TU Dresden, 2008. to appear.

79

How efficient are creatures with time-shuffled behaviors?

Patrick Ediger Rolf Hoffmann

Mathias Halbach

TU Darmstadt, FB Informatik, FG Rechnerarchitektur

Hochschulstraße 10, D-64289 Darmstadt

{ediger, hoffmann, halbach}@ra.informatik.tu-darmstadt.de

Abstract: The task of the creatures in the “creatures’ exploration problem” is to visit
all empty cells in an environment with a minimum number of steps. We have analyzed
this multi agent problem with time-shuffled algorithms (behaviors) in the cellular au-
tomata model. Ten different “uniform” (non-time-shuffled) algorithms with good per-
formance from former investigations were used alternating in time. We designed three
time-shuffling types differing in the way how the algorithms are interweaved. New
metrics were defined for such a multi agent system, like the absolute and relative effi-
ciency. The efficiency relates the work of an agent system to the work of a reference
system. A reference system is such a system that can solve the problem with the low-
est number of creatures with uniform or time-shuffled algorithms. Some time-shuffled
systems reached high efficiency rates, but the most efficient system was a uniform one
with 32 creatures. Among the most efficient successful systems the uniform ones are
dominant. Shuffling algorithms resulted in better success rates for one creature. But
this is not always the case for more than one creature.

1 Introduction

The general goal of our project is to optimize the cooperative behavior of moving creatures

in order to fulfill a certain global task in an artificial environment. A creature (another term:

agent) behaves according to an algorithm which is stored in the creature.

We distinguish uniform and time-shuffled systems of creatures. A uniform system com-

prises creatures with one uniform behavior (algorithm) only whilst a time-shuffled system

comprises creatures with generation-wise alternating behaviors. The goal of this inves-

tigation was to find out for the creatures’ exploration problem (explained below), which

algorithms “harmonize” best, meaning which combinations of algorithms with how many

creatures are the most efficient. Different measures for efficiency were defined and used

to compare the different systems. When we are speaking about efficiency you may think

of cost (e. g., Euros) which you have to pay in total for the involved creatures to fulfill the

task.

We are modeling the behavior by a finite state machine (Sec. 2). In the past we have tried

to find out the best algorithm for one creature by enumeration. The number of state ma-

chines which can be coded using a state table is M = (#s#y)(#s#x) where n = #s

80

is the number of states, #x is the number of different input states and #y is the num-

ber of different output actions. Note that M increases dramatically, especially with #s,

which makes it very difficult or even impossible to check the quality of all algorithms by

enumeration in reasonable time. By hardware support (FPGA technology) we were able

to simulate and evaluate all 1212 6-state algorithms (including algorithms with less than

6 states and including redundant ones) for a test set of 5 initial configurations [HHB06].

The 10 best algorithms (with respect to percentage of visited cells) were used in further

investigations to evaluate the robustness (using additional 21 environments) and the effi-

ciency of k > 1 creatures. It turned out that more than one creature may solve the problem

with less cost than a single one [HH07]. In our investigation we have concentrated on

time-shuffled systems using the previously found algorithms. This time we are using 16

new environments compared to the environments used before. Now we use a field of fixed

size 35 × 35 with a fixed number of obstacles (129). Thereby we are able to place the

creatures at the beginning in regular formations and the number of obstacles becomes a

constant which simplifies the analysis.

We have already started experiments using metaheuristics to optimize the algorithms. We

are optimistic to find agent algorithms for more complex agent problems and we will use a

cluster of FPGAs for that purpose to exploit the inherent parallelism in the metaheuristics.

Our current results also give a partial answer to the question: If algorithms are combined,

what are the expectation rates for good or bad combinations of them?

Modeling the behavior with a state machine with a restricted number of states and eval-

uation by enumerations was also undertaken in SOS [MSPPU02]. Additional work was

done by these authors using genetic algorithms. The creatures’ exploration problem based

on our model was further investigated in [DL06]. Randomness was added which led to a

higher degree of success. Our research in general is related to works like: Evolving op-

timal rules for cellular automata (CA) [Sip97, ST99], finding out the center of gravity by

marching pixels [FKSL07, FS05, KMF07], evolving hardware [US06], using evolutionary

algorithms and metaheuristics [Alb05].

The remainder of this paper is organized as follows. Sec. 2 describes how the problem

is modeled in the CA model. Sec. 3 describes how well only uniform creatures under

varying the environment solve the problem. Sec. 4 describes how efficient creatures with

time-shuffled behavior can solve the problem.

2 CA model for the creatures’ exploration problem

The problem is the following: p creatures are moving around in an environment that con-

sists of empty cells and obstacle cells in order to visit all reachable empty cells in the

shortest time. Creatures cannot move on obstacle cells, and only one creature can be lo-

cated on an empty cell at the same time. Creatures can look forward one cell ahead which

is in its moving direction. The creatures may perform four different actions: R (turn right

only), L (turn left only), Rm (move forward and simultaneously turn right), Lm (move

forward and simultaneously turn left).

81

If the “front cell” (the cell ahead) is not free, because it is an obstacle cell, another creature

stands on it, or a collision conflict is anticipated, the action R or L is performed. In all

other cases the action Lm or Rm is performed (Fig. 1). The detection of anticipated

conflicts is realized by an arbitration signal from the destination cell. Each creature sends

a request to its front cell, which sends back a grant signal if only one creature has sent a

request [HHB06].

creature in one
out of two
directions

obstacle or
creature

irrelevant

(a1) if (obstacle or creature) then turn (L/R)

(a2) if (anticipated conflict) then turn (L/R)

(b) if not((a1) or (a2)) then move and turn (Lm/Rm)

Figure 1: The conditions for the moving creatures’ rules

The modeling of the behavior was done by implementing the rules with a state machine

considered as a Mealy automaton with inputs (m, s), next state s′ and output d (Fig. 2).

An algorithm is defined by the contents of a state table assigned to the state machine. We

are coding an algorithm into a string representation or a simplified string representation by

concatenating the contents line by line to a string or a corresponding number, e. g.,

1L2L0L4R5R3R-3Lm1Rm5Lm0Rm4Lm2Rm string representation

= 1L2L0L4R5R3R-3L1R5L0R4L2R simplified string representation

The state table can be represented more clearly as a state graph (Fig. 2). If the state

machine uses n states, we call such an algorithm n-state algorithm. If the automaton is

considered as a Moore automaton instead of a Mealy automaton, the number of states will

be the product n × #r, where #r is the number of possible directions (4 in our case).

3 Uniform systems with one creature

In preceding investigations [HHB06] we could discover and evaluate the best 6-state al-

gorithms for one creature by the aid of special hardware. The behavior of all relevant

algorithms was simulated and evaluated for 26 initial test configurations (they are differ-

ent from the ones we are using here). The following 10 best algorithms were ranked using

a dominance relation with the criteria (1.) success, (2.) coverage and (3.) speed:

82

1 L
2 L

0 L

4 R

5 R

3 R
3 Lm

1 Rm

5 Lm

0 Rm
4 Lm

2 Rm

0 0
0 1

0 2

0 3

0 4

0 5
1 0

1 1

1 2

1 3

1 4
1 5

s r

v

m(a)

Lm

L

R

Rm

0 2

1

3 5

4

L

L

R R

LmLm

RmRm

Lm

L

R

Rm

0 2

1

3 5

4

L

L

R R

LmLm

RmRm

(b)s control state

r direction

v(r,d) new direction
m creature can move

L/R turn left/R if (m=1)

Lm/Rm turn left/R and move if (m=0)

d

s'

T
a
b

le
N

o
tF

re
e

T
a
b

le
F

re
e

Figure 2: A state machine (a) models a creature’s behavior. Corresponding 6-state algorithm (b)

1. G: 1L2L0L4R5R3R-3L1R5L0R4L2R 6. E: 1R2L0R4L5L3L-3R4R5R0L1L2R

2. B: 1R2R0R4L5L3L-3R1L5R0L4R2L 7. F: 1R2L0L4R5R3R-3L4L5L0R1L2R

3. C: 1R2R0R4L5L3L-3R4R2L0L1L5R 8. H: 1L2L3R4L2R0L-2L4L0R3L5L4R

4. A: 0R2R3R4L5L1L-1R5R4R0L2L3L 9. I: 1L2L3L4L2R0L-2L4L0R3R5L4R

5. D: 1R2R3R1L5L1L-1R0L2L4R3L1L 10. J: 1R2R3R0R4L5L-4R5R3L2L0L1L

The following definitions and metrics are used:

• k := number of creatures

• R := number of empty cells

• g := generation (time steps)

• r(g): = number of visited cells in generation g
• rmax := the maximum number of cells which can be visited for g → ∞
• gmax := the first generation in which rmax is achieved

• e := rmax/R[%], the coverage or exploration rate, i. e. visited cells
all empty cells

• speed := R/gmax (only defined for successful algorithms)

• step rate := 1/speed (the number of cells visited in one generation)

In order to find time-shuffled algorithms that are robust against changes of the environ-

ments, we have created a set of I = 16 environments which all contain 129 obstacle cells

(Fig. 3). Then the algorithms A to J were simulated on them with one creature. The results

show that none of the algorithms is capable of solving every environment successfully

(Tab. 1). The best algorithms with respect to these environments are the algorithms B,

G and J. Algorithm B has a mean speed (for k = 1 creature, see definition in Sec. 4)

of 16.12% for the successful environments. The highest reachable mean speed would be

100% (visiting one new empty cell in each step). The mean step rate, which is the recipro-

cal of the mean speed, is 5.31 (every 5.31 steps an empty cell is visited). We can interpret

the mean step rate as work or cost which has to be paid for a creature to visit a cell (e. g.,

5.31C per empty cell to visit, or to “clean” one “square meter”, if you think of cleaning a

room). Fig. 4 shows an example how algorithms may behave in principle. Algorithm B is

successful for the environments 6, 10 and 16 and the speed is comparable (around 960 /

5400). Algorithm J is not successful for the environments 6 and 10.

83

manually

designed

symmetrical

(Env0 – Env3)

manually

designed

asymmetrical

(Env4 – Env9)

6 times randomly

generated (Env10 –

Env15)

Figure 3: The 16 environments with 35 × 35 cells, manually designed or randomly generated. Each
environment comprises R = 960 empty cells and 129 obstacles.

 0

 200

 400

 600

 800

 1000

 0 1000 2000 3000 4000 5000 6000

V
is

it
e

d
 C

e
lls

 r

Generations g

Algorithm B

R
Env6

Env10
Env16

 0

 200

 400

 600

 800

 1000

 0 1000 2000 3000 4000 5000 6000

V
is

it
e

d
 C

e
lls

 r

Generations g

Algorithm J

R
Env6

Env10
Env16

Figure 4: Curves showing the number of visited cells r(g) (generations g on the x-axis, visited cells
r on the y-axis) for the algorithms B and J for the environments Env6, Env10 and Env16. R = 960.

4 Multi creature and time-shuffled systems

In [HH07, HH06] we have evaluated that increasing the number of creatures can lead to

synergy effects, i. e., the uniform creatures can work more efficiently together than by their

own. 1 to 64 creatures were arranged on the cellular field symmetrically side by side at the

borders (Fig. 5). The same distribution was used for the following investigation.

In order to investigate the performance of time-shuffled systems (multi agent system with

time-shuffled algorithms), we have simulated all pairs (X,Y) of the former best single

algorithms (A to J) on all 16 environments (Fig. 3) whereas the uniform pairs (X,X) are

included for comparison. We used three different modes of time-shuffling the different

algorithms (Fig. 6):

• common (c), each creature works with both algorithms alternating them generation-

84

A
lg

o
ri

th
m

S
u

c
c
e
s
s
 E

n
v
0

S
u

c
c
e
s
s
 E

n
v
1

S
u

c
c
e
s
s
 E

n
v
2

S
u

c
c
e
s
s
 E

n
v
3

S
u

c
c
e
s
s
 E

n
v
4

S
u

c
c
e
s
s
 E

n
v
5

S
u

c
c
e
s
s
 E

n
v
6

S
u

c
c
e
s
s
 E

n
v
7

S
u

c
c
e
s
s
 E

n
v
8

S
u

c
c
e
s
s
 E

n
v
9

S
u

c
c
e
s
s
 E

n
v
1
0

S
u

c
c
e
s
s
 E

n
v
1
1

S
u

c
c
e
s
s
 E

n
v
1
2

S
u

c
c
e
s
s
 E

n
v
1
3

S
u

c
c
e
s
s
 E

n
v
1
4

S
u

c
c
e
s
s
 E

n
v
1
5

T
 =

N
o

.
S

u
c
c
e
s
s
fu

l

to
ta

l
v
is

it
in

g

p
e
rc

e
n

ta
g

e

m
e
a
n

 g
_
m

a
x

(s
u

c
c
e
s
s
fu

l)

m
e
a
n

 r
_
m

a
x

m
e
a
n

 s
p

e
e
d

(s
u

c
c
e
s
s
fu

l)

m
e
a
n

s
te

p
 r

a
te

B O O O O X O X X X O O X O X X O 7 88,74% 5956 852 16,12% 5,31

G O O O O X O X X X O O X O X X O 7 87,32% 5998 838 16,01% 5,10

J O O O O O X O X O X X O X X X O 7 85,89% 6813 825 14,09% 5,78

C X O O O X O X X O O O O O X X O 6 86,92% 5626 834 17,06% 4,86

E O O O O O X O X O X O O O X O O 4 83,42% 6664 801 14,41% 5,20

A O O X X O O O O O O O O O O O X 3 82,38% 14297 791 6,71% 8,32

F O O O O O O O O O X O O O X O O 2 73,08% 6405 702 14,99% 4,60

D O O O O O O O O O O O O O O O O 0 47,55% - 456 - 2,96

H O O O O O O O O O O O O O O O O 0 36,20% - 348 - 4,69

I O O O O O O O O O O O O O O O O 0 36,20% - 348 - 4,75

Table 1: Results of the simulation of one creature. The values are averaged over all environments,
respectively over the T successfully visited environments in the case of “mean gmax” and “mean
speed”. An X in the columns “Success Envn” indicates that the environment was successfully
solved, an O that it was not.

1 Creature: only at upper border
2 Creatures: at upper and lower border
4 Creatures: 1 at all borders
8 Creatures: 2 at all borders
12 Creatures: 3 at all borders
16 Creatures: 4 at all borders
28 Creatures: 7 at all borders
32 Creatures: 8 at all borders
60 Creatures: 15 at all borders
64 Creatures: 16 at all borders

Figure 5: The arrangement of creatures in a multi creature system.

wise (odd/even). But it has only one common state s which is shared by the algo-

rithms.

• simultaneous (s), each creature works with both algorithms simultaneously. Each of

the algorithm has its own state (sx, sy). The output is taken alternating from X/Y
for t = 0/1. Both states are updated in each generation.

• alternate (a), an individual state is used for each algorithm. For t = 0 the output is

taken from X and only the state sx is updated. For t = 1 the output is taken from Y
and only the state sy is updated.

The shuffling modes c and s are identical for all “pairs” (X,X). In that case they are in

fact uniform systems.

One creature time-shuffled. The results (Tab. 2) show that one creature with time-

shuffling can solve more environments successfully than the uniform systems. With the

alternate shuffling up to 12 environments can be solved (B, J), 11 with the simultaneous

variant (A,G) and the best pair with the common time-shuffling is (G,F).

85

s

t

m

t

X

Y

d

common (c)

d
sX

m

t

X

Y

sY

simultaneous (s)

sX

t

m

t

X

Y

d

ce
sY

alternate (a)

Figure 6: Types of time-shuffling of creature state machines. X is the first algorithm, Y the second.
t = 0/1 is a function of the generation counter and controls the outputs and in the cases c and a also
the state transition. ce (clock enable) is a signal that enables the state transition.

A
lg

o
ri

th
m

 X

A
lg

o
ri

th
m

 Y

S
h

u
ff

li
n

g

S
1

S
2

S
3

S
4

S
6

S
7

S
8

S
9

S
1

0

S
1

1

S
1

2

S
1

3

S
1

4

S
1

5

S
1

6

S
1

7

T
 =

 N
o

.

S
u

c
c

e
s

s
fu

l

to
ta

l
v

is
it

in
g

p
e

rc
e

n
ta

g
e

m
e

a
n

 s
p

e
e

d

(s
u

c
c

e
s

s
fu

l)

G F c X O O O X O O O X O X O X X X X 8 85,44% 9,51%

E C c X O O O X O O O X O X X X X O X 8 82,50% 9,61%

C B c O O O O X O X O X X X O X O X X 8 71,50% 11,54%

A G s O X O X X X X O X O X O X X X X 11 96,33% 3,82%

J B s O X O O X O X O O X X O X X X X 9 92,42% 5,07%

B J s O X O O X O X O X X X O X X O X 9 85,61% 6,01%

B J a X X X O X O X O X O X X X X X X 12 85,84% 5,79%

B A a X O O X X O X O X X X X X O X X 11 99,38% 4,48%

C A a X X O X X O X X X O X X X O X O 11 95,24% 4,90%

Table 2: The three pairs of algorithms for each kind of shuffling that have the most successes (1.) and
the highest total visiting percentage (2.) with one creature. The overall most successful algorithm
pairs are shown in bold letters.

In the following we will denote a system in the way XYp-k, where XY is the pair of algo-

rithms, k the number of agents and p the mode of time-shuffling (optional). E. g., ABa-8

is a system with 8 creatures using an alternate time-shuffling of the algorithms (A,B).

Successful systems, depending on the number of creatures. By increasing the number

of creatures the success rate also increases (Tab. 3). At least 8 creatures are necessary to

visit successfully all environments. The systems J-8 and nine other time-shuffled systems

with 8 creatures are successful. With 64 creatures 9 out of 10 uniform systems (B-64 to

J-64) and 58 out of 280 time-shuffled systems are successful. In total 41/100 uniform and

185/2800 time-shuffled systems are successful for all 16 environments.

Metrics for time-shuffled systems with more than one creature. To be able to evaluate

and compare time-shuffled systems (including uniform systems) with a different number

of creatures we have defined additional metrics:

86

NO. OF SUCCESSFUL NO. OF SUCCESSFUL SYSTEMS / NO. OF COMBINATIONS

CREATURES (UNIFORM ONLY)
(TIME-SHUFFLED)

c+s+a common (c) simultaneous (s) alternate (a)

1 - 0/280 0/90 0/90 0/100

2 - 0/280 0/90 0/90 0/100

4 - 0/280 0/90 0/90 0/100

8 J 9/280 1/90 3/90 5/100

12 B,C,J 9/280 1/90 5/90 3/100

16 B,C,E,G,J 16/280 2/90 7/90 7/100

28 B,C,D,E,I,J 25/280 6/90 8/90 11/100

32 C,D,E,F,G,H,I,J 23/280 7/90 6/90 10/100

60 B,C,D,E,F,G,H,I,J 45/280 12/90 14/90 19/100

64 B,C,D,E,F,G,H,I,J 58/280 13/90 20/90 24/100

total 41/100 185/2800 43/900 63/900 79/1000

Table 3: Percentage of algorithm pairs that solve successfully all 16 environments

• mean speed per creature = ms(k) =

∑
rmax,i

k·
∑

gmax,i

. The speed ms(k) is an average

over all environments i and is related to one creature. This measure expresses how

fast a creature can visit a cell on average (maximum is 100%). This measure should

not be used if any environment can not be successfully visited because then the mean

speed might be believed higher than reasonable.

• mean normalized work = mw(k) =
k·

∑
gmax,i∑

rmax,i

= 1
ms(k) . This value represents the

work which is necessary, or the costs one has to pay for one creature to visit a cell.

• relative efficiency = ms(XY -k)
ms(XY -kmin) . First a reference system XY-kmin has to be found

which can solve the problem with the lowest number kmin of creatures. The relative

efficiency relates the mean speed of the system XY-k to the mean speed of the ref-

erence system XY-kmin. This measure compares the costs of the reference system

XY-kmin with the cost of the system XY-k. If the relative efficiency is higher than

one, the work can be done cheaper with the system XY-k. Two similar measures can

be defined if the uniform reference system X-kmin or the uniform reference system

Y-kmin is chosen instead of XY-kmin.

• absolute efficiency = ms(XY -k)
ms(UV -kmin) . In distinction to the relative efficiency another

reference algorithm pair is used. The reference is the fastest of any algorithm pair

UV (including the uniform “pairs” UU) which can solve the problem with a min-

imum number of creatures. A similar measure can be defined if the fastest of any

uniform reference systems U-kmin is chosen instead of UV-kmin.

The efficiency measures are only defined if a kmin exists and if the system XY-k solves all

16 environments successfully. We have assumed for the reference algorithm the common

time-shuffling mode because it is the least complex (only one state register).

The fastest systems. In the following evaluations we will only take into account those

systems that were successful on all environments. The system BCc-64 is the fastest, need-

87

ing only 218 generations on average to solve the problem (Tab. 4). 8 of the 10 fastest pairs

are uniform systems.

N
o

.
o

f

C
re

a
tu

re
s
 (

k
)

A
lg

o
ri

th
m

 X

A
lg

o
ri

th
m

 Y

S
h

u
ff

li
n

g

m
e
a
n

 g
_
m

a
x

m
e
a
n

 s
p

e
e
d

p
e
r

c
re

a
tu

re

m
e
a
n

n
o

rm
a
li

z
e
d

w
o

rk

a
b

s
o

lu
te

e
ff

ic
ie

n
c
y

c
o

m
p

a
re

d

to
 J

8

64 B C c 218 6,89% 14,51 € 1,038

60 J J u 224 7,13% 14,03 € 1,073

60 B C c 233 6,86% 14,58 € 1,033

60 G G u 245 6,52% 15,34 € 0,982

64 J J u 257 5,83% 17,15 € 0,878

60 C C u 257 6,22% 16,09 € 0,936

64 B B u 261 5,76% 17,38 € 0,867

60 B B u 276 5,80% 17,25 € 0,873

64 C C u 285 5,27% 18,99 € 0,793

64 G G u 314 4,78% 20,92 € 0,720

Table 4: The 10 absolute fastest systems (sorted ascending by “mean gmax”) which solve all 16
environments. “u” in shuffling means that these are actually uniform systems.

The most efficient systems. When looking at Tab. 5 you will notice that the most efficient

(absolute efficiency) system J-32 is uniform with the efficiency of 1.184. Furthermore

7 of the top ten (absolute efficiency) are uniform. The reference system is J-8 for all

the systems. The three time-shuffled systems with efficiencies higher than one are BCc-

28/64/60. We can conclude that only common time-shuffling led to efficiencies higher

than one but not in an amount that was expected when we had started this investigation.

Time-shuffled systems with one creature behaved much better than uniform systems with

one creature, but it cannot be deduced that time-shuffled systems always behave better

than uniform systems.

Considering only successful systems, 7 out of 41 uniform systems and 3 out of 185 time-

shuffled systems reach an absolute efficiency higher than one. These results give a hint on

what will happen when good agents are randomly combined through time-shuffling, e. g.,

during genetic methods: only a low percentage will be better than their “parents”.

Tab. 5 includes also values for the relative efficiencies which can get higher than the abso-

lute efficiencies, e. g., the relative efficiency of BCc-28 compared to B-12 is 1.881.

We have also counted the different types of conflicts (Tab. 5): (a) static obstacle is on

the front cell, (b) another creature is on the front cell (dynamic obstacle), (c) anticipated

conflicts (2, 3 or 4 creatures want to visit the same cell). At the moment it is not clear,

whether there is a significant relation between the efficiency and the types and frequency

of the conflicts.

The overproportionate gain of efficiency for parallel systems with more than one creature

can be interpreted as “synergy”. We presume this effect is due to many reasons, like: Crea-

tures react individually to their local environment and can be in different states, additional

communication implicitely exists by the conflict anticipation mechanism and creatures can

start at different positions which can be an advantage.

88

N
o

.
o

f
C

re
a
tu

re
s
 (

k
)

A
lg

o
ri

th
m

 X

A
lg

o
ri

th
m

 Y

S
h

u
ff

li
n

g

m
e
a
n

 g
_
m

a
x

m
e
a
n

 s
p

e
e
d

p
e
r

c
re

a
tu

re

m
e
a
n

n
o

rm
a
li

z
e
d

 w
o

rk

m
e
a
n

 c
o

n
fl

ic
ts

 (
c
)

m
e
a
n

 c
o

n
fl

ic
ts

 (
b

)

m
e
a
n

 c
o

n
fl

ic
ts

 (
a
)

m
e
a
n

 c
o

n
fl

ic
ts

p
e
r

c
re

a
tu

re

c
o

n
fl

ic
ts

 p
e
r

v
is

it

re
la

ti
v
e
 e

ff
ic

ie
n

c
y

(u
n

if
o

rm
 X

)

re
la

ti
v
e
 e

ff
ic

ie
n

c
y

(u
n

if
o

rm
 Y

)

a
b

s
o

lu
te

 e
ff

ic
ie

n
c
y

c
o

m
p

a
re

d
 t

o
 J

-8

re
a
lt

iv
e
 e

ff
ic

ie
n

c
y

(c
o

m
m

o
n

 X
Y

)

k
_
m

in
 X

k
_
m

in
 Y

k
_
m

in
 X

Y

32 J J u 382 7,86% 12,72 € 8 7 60 74 0,08 1,184 1,184 1,184 3,113 8 8 8

28 B C c 437 7,85% 12,74 € 11 6 70 88 0,09 1,881 1,527 1,182 4,697 12 12 28

16 J J u 768 7,81% 12,80 € 8 6 126 140 0,15 1,176 1,176 1,176 3,092 8 8 8

28 B B u 456 7,52% 13,30 € 9 8 68 84 0,09 1,803 1,803 1,132 4,044 12 12 12

12 J J u 1069 7,48% 13,36 € 8 7 155 170 0,18 1,127 1,127 1,127 2,963 8 8 8

28 J J u 463 7,41% 13,49 € 8 8 69 86 0,09 1,116 1,116 1,116 2,934 8 8 8

28 C C u 475 7,22% 13,85 € 9 8 72 90 0,09 1,404 1,404 1,087 1,664 12 12 12

60 J J u 224 7,13% 14,03 € 9 10 35 54 0,06 1,073 1,073 1,073 2,822 8 8 8

64 B C c 218 6,89% 14,51 € 10 9 35 54 0,06 1,652 1,341 1,038 4,126 12 12 28

60 B C c 233 6,86% 14,58 € 9 10 36 55 0,06 1,644 1,334 1,033 4,105 12 12 28

8 J J u 1807 6,64% 15,06 € 10 6 262 278 0,29 1,000 1,000 1,000 2,629 8 8 8

Table 5: The top 10 most absolute efficient (lowest total costs) non-uniform systems. Constraint: all
algorithm pairs are successful in all 16 environments (visiting percentage = 100%). “u” in shuffling
means that these are actually uniform systems.

5 Conclusion

The creatures’ exploration problem was investigated in the CA model for multiple crea-

tures using time-shuffled combinations of 10 algorithms (behaviors). These algorithms had

shown a good performance in former investigations. The analysis was performed for 16

new environments of size 35 × 35 and 129 obstacles each. New metrics have been defined

for such multi creature systems, especially the mean speed, the relative efficiency (compar-

ing the work of a system with an algorithmic similar system using the minimum number of

creatures which can solve the problem), and the absolute efficiency (comparing the work

of a system with an algorithmic potentially different system using the minimum number

of creatures which can solve the problem). A single creature is not successful for all en-

vironments. One time-shuffled creature was more successful but still could not visit all

environments successfully. The problem could only be solved using at least 8 creatures for

the uniform system J-8 and nine other time-shuffled systems. 185 time-shuffled systems

out of all 2800 time-shuffled combinations were successful. The overall fastest system is

the time-shuffled system BJc-64, but it is not the most efficient. The most efficient system

is uniform: J-32. It turned out that the system BCc-28 (28 creatures, algorithms B and

C, time-shuffled with a common state) is 18% more efficient than the uniform reference

system J-8. Under the top ten most efficient systems are 3 time-shuffled and 7 uniform

ones.

Our future work is directed to investigate other methods of time-shuffling or of combin-

ing different algorithms. It is also promising to compare creatures which are different in

space (non-uniform), study the relation between conflicts and efficiency, and optimizing

the behavior through heuristics.

89

References

[Alb05] Enrique Alba. Parallel Metaheuristics: A New Class of Algorithms. John Wiley &
Sons, NJ, USA, August 2005.

[DL06] Bruno N. Di Stefano and Anna T. Lawniczak. Autonomous Roving Object’s Coverage
of its Universe. In CCECE, pages 1591–1594. IEEE, 2006.

[FKSL07] Dietmar Fey, Marcus Komann, Frank Schurz, and Andreas Loos. An Organic Com-
puting architecture for visual microprocessors based on Marching Pixels. In ISCAS,
pages 2686–2689. IEEE, 2007.

[FS05] Dietmar Fey and Daniel Schmidt. Marching-pixels: a new organic computing
paradigm for smart sensor processor arrays. In Nader Bagherzadeh, Mateo Valero,
and Alex Ramı́rez, editors, Conf. Computing Frontiers, pages 1–9. ACM, 2005.

[HH06] Rolf Hoffmann and Mathias Halbach. Are Several Creatures More Efficient Than a
Single One? In Samira El Yacoubi, Bastien Chopard, and Stefania Bandini, editors,
ACRI, volume 4173 of Lecture Notes in Computer Science, pages 707–711. Springer,
2006.

[HH07] Mathias Halbach and Rolf Hoffmann. Solving the Exploration’s Problem with Sev-
eral Creatures More Efficiently. In Roberto Moreno-Dı́az, Franz Pichler, and Alexis
Quesada-Arencibia, editors, EUROCAST, volume 4739 of Lecture Notes in Computer
Science, pages 596–603. Springer, 2007.

[HHB06] Mathias Halbach, Rolf Hoffmann, and Lars Both. Optimal 6-State Algorithms for the
Behavior of Several Moving Creatures. In Samira El Yacoubi, Bastien Chopard, and
Stefania Bandini, editors, ACRI, volume 4173 of Lecture Notes in Computer Science,
pages 571–581. Springer, 2006.

[KMF07] Marcus Komann, Andreas Mainka, and Dietmar Fey. Comparison of Evolving Uni-
form, Non-uniform Cellular Automaton, and Genetic Programming for Centroid De-
tection with Hardware Agents. In Victor E. Malyshkin, editor, PaCT, volume 4671 of
Lecture Notes in Computer Science, pages 432–441. Springer, 2007.

[MSPPU02] Bertrand Mesot, Eduardo Sanchez, Carlos-Andres Peña, and Andres Perez-Uribe.
SOS++: Finding Smart Behaviors Using Learning and Evolution. In R. Standish,
M. Bedau, and H. Abbass, editors, Artificial Life VIII: The 8th International Confer-
ence on Artificial Life, pages 264–273, Cambridge, Massachusetts, 2002. MIT Press.

[Sip97] Moshe Sipper. Evolution of Parallel Cellular Machines, The Cellular Programming
Approach, volume 1194 of Lecture Notes in Computer Science. Springer, 1997.

[ST99] Moshe Sipper and Marco Tomassini. Computation in artificially evolved, non-uniform
cellular automata. Theor. Comput. Sci., 217(1):81–98, 1999.

[US06] Andres Upegui and Eduardo Sanchez. On-chip and on-line self-reconfigurable adapt-
able platform: the non-uniform cellular automata case. In IPDPS. IEEE, 2006.

90

Hybrid Parallel Sort on the Cell Processor

Jörg Keller1, Christoph Kessler2, Kalle König3 and Wolfgang Heenes3

1FernUniversität in Hagen, Fak. Math. und Informatik, 58084 Hagen, Germany

joerg.keller@FernUni-Hagen.de
2Linköpings Universitet, Dept. of Computer and Inf. Science, 58183 Linköping, Sweden

chrke@ida.liu.se
3Technische Universität Darmstadt, FB Informatik, 64289 Darmstadt, Germany

kalle koenig@gmx.de
heenes@ra.informatik.tu-darmstadt.de

Abstract: Sorting large data sets has always been an important application, and hence
has been one of the benchmark applications on new parallel architectures. We present
a parallel sorting algorithm for the Cell processor that combines elements of bitonic
sort and merge sort, and reduces the bandwidth to main memory by pipelining. We
present runtime results of a partial prototype implementation and simulation results
for the complete sorting algorithm, that promise performance advantages over previ-
ous implementations.

Key words: Parallel Sort, Merge Sort, Cell Processor, Hybrid Sort

1 Introduction

Sorting is an important subroutine in many high performance computing applications, and

parallel sorting algorithms have therefore attracted considerable interest continuously for

the last 20 years, see e.g. [Akl85]. As efficient parallel sorting depends on the underly-

ing architecture [AISW96], there has been a rush to devise efficient parallel sorting algo-

rithms for every new parallel architecture on the market. The Cell BE processor (see e.g.

[GEMN07] and the references therein) presents a challenge in this respect as it combines

several types of parallelism within a single chip: each of its 8 parallel processing units

(called SPEs) is an SIMD processor with a small local memory of 256 KBytes. The SPEs

communicate via one-sided message-passing over a high-speed ring network with each

other and with the off-chip main memory, that is shared among the SPEs, but not kept

consistent. The chip also contains a multi-threaded Power processor core, which however

is not of particular interest for our work. Although the majority of applications for Cell

seem to be numerical algorithms, there have been several attempts to efficiently imple-

ment sorting on that architecture. We present a sorting algorithm that incorporates those

attempts by combining bitonic sort, merge sort, and pipelining to reduce the bandwidth

to main memory, which is seen as one of the major bottlenecks in Cell. We report on

the performance of a partial prototype implementation, and on simulation results for the

91

Figure 1: Cell BE Processor Architecture

full sorting algorithm. The combined results indicate that our algorithm outperforms all

previous approaches.

The remainder of this article is organized as follows. In Section 2 we provide all technical

information necessary to attack the problem at hand, and discuss related work. In Section

3 we detail our solution, report on the performance results for our pipelined merger com-

ponents of the overall sorting algorithm on a Play Station 3, and extrapolate from these

data for the analysis of the expected performance of the overall sorting algorithm. Section

4 concludes and gives an outlook on further developments.

2 Cell Processor and Parallel Sorting

The Cell BE processor [GEMN07] is a multi-core processor consisting of 8 SIMD proces-

sors called SPE and a dual-threaded Power core (PPE), cf. Fig. 1. Each SPE has a small

local memory of 256 KBytes that contains code and data. There is no cache, no virtual

memory, and no operating system on the SPE. The SPE has datapaths and registers 128

bits wide, and instructions to operate on them as on vector registers, e.g. perform paral-

lel comparisons between two registers, each seen as holding four 32-bit values. Hence,

control flow instructions tremendously slow down data throughput of an SPE. The main

memory is off-chip, and can be accessed by all SPEs and the Power core, i.e. it is a shared

memory. Yet, there is no protocol to automatically ensure coherency between local mem-

ories and main memory. Data transfer between an SPE and another SPE or the main

memory is performed by DMA. Thus, data transfer and computation can be overlapped,

but communications must be programmed at a very low level. The SPEs, the PPE core

and the memory interface are interconnected by the Element Interconnect Bus (EIB). The

EIB is implemented via four uni-directional rings with an aggregate bandwidth of 306.4

GByte/s. The bandwidth of each unit on the ring to send data over or receive data from the

ring is only 25.6 GByte/s. Hence, the off-chip memory tends to become the performance

92

bottleneck. Programming the Cell processor is challenging. The programmer has to strive

to use the SPE’s SIMD architecture efficiently, and has to take care for messaging and

coherency, taking into account the rather small local memories.

The Cell processor seems to have two major application fields: gaming1 and numerical

algorithms. To our knowledge, there are only a few investigations about parallel sorting

algorithms for the Cell processor, most notably [GBY07, IMKN07] that use bitonic sort

and merge sort, respectively. There is also an implementation of radix sort [RB07], but

only with a 4 bit radix, because for an 8 bit radix the array of counters would not fit into

the SPE’s local store. Also [GBY07] reports to have investigated radix sort but that it

“involve(s) extensive scalar updates using indirection arrays that are difficult to SIMDize

and thus, degrade the overall performance.”

The paper [IMKN07] is quite close to our work and appeared only a few months before

this article was written. Both [GBY07] and [IMKN07] work in two phases to sort a data

set of size n, with local memories of size m. In the first phase, blocks of data of size 8m
that fit into the combined local memories of the SPEs are sorted. In the second phase,

those sorted blocks of data are combined to a fully sorted data set.

In [GBY07], the first phase is realized in two stages: in the first stage, each SPE sorts

data in its local memory sequentially by a variant of Batcher’s bitonic sort, then the SPEs

perform Batcher’s bitonic sort on the sorted data in their local memories. The combined

content of their local memories is then written to main memory as a sorted block of data.

This is repeated n/(8m) times until the complete data set is turned into a collection of

sorted blocks of data. The second phase performs Batcher’s bitonic sort on those blocks.

Batcher’s sort is chosen because it needs no data dependent control flow and thus fully

supports the SPE’s SIMD architecture. The disadvantage is that O(n log2 n) data have to

be read from and written to main memory, which makes the main memory link the limiting

speed factor, and the reason why the reported speedups are very small.

In [IMKN07], the first phase is also realized in two stages: in the first stage, each SPE per-

forms a variant of combsort that exploits the SIMD capability of the SPE, then the SPEs

perform a mergesort on the sorted data in their local memories. As in the first approach,

this is repeated n/(8m) times. The second phase is mergesort, that uses a so-called vec-

torized merge to exploit the SIMD instructions of the SPEs, and employs a 4-to-1-merge

to reduce memory bandwidth. Yet, each merge procedure reads from main memory and

writes to main memory, so that n log4(n/(8m)) data are read from and written to main

memory during the second phase.

Our approach focuses on the second phase, as the first phase only reads and writes n data

from and to the main memory, and thus is not as critical to the overall performance as the

second phase. Also, there are known approaches for the first phase. We also implemented

a vectorized merge routine, similar to that of [IMKN07] (then unknown to us), only that

we perform 2-to-1 merges. The vectorization uses a variant of Batcher’s bitonic sort to

merge chunks of four successive 32-bit integers, as those will fit into one Cell register.

However, there is a notable difference between our approach and that of [IMKN07]. We

run mergers of several layers of the merge tree concurrently to form a pipeline, so that

1In a variant with 6 SPEs, Cell is deployed in the Play Station 3.

93

output from one merger is not written to main memory but sent to the SPE running the

follow-up merger. Thus, we can realize 16-to-1 or 32-to-1 mergers between accesses to

main memory, and reduce the memory bandwidth by a factor of 2 and 2.5, respectively,

in relation to [IMKN07]. In order to exploit this advantage we have to ensure that our

pipeline runs close to the maximum possible speed, which requires consideration of load

balancing. More concretely, if a merger M must provide an output rate of k words per time

unit, then the two mergers M1, M2 feeding its inputs must provide a rate of k/2 words per

time unit on average. However, if the values in M2 are much larger than in M1, the merger

M will only take values from the output of M1 for some time, so that the merger M1 must

be able to run at a rate of k words for some time, or the output rate of M will reduce!

In principle, we could have mapped each layer of a binary merge tree onto one SPE, each

SPE working the mergers of its layer in a time-slot fashion. A time slot is the time that

a merger needs to produce one buffer full of output data, provided that its input buffers

contain enough data. Thus, with k SPEs, we realize a 2k-to-1 merge. This will balance

load between the layers as the combined rate from one layer to the next is the same for all

layers. Also, because of finite size buffers between the mergers, if M only draws from M1,

M2 will not be able to work further and thus M1 will get more time slots and be able to

deliver faster. The disadvantage of this model is that the larger i, the more mergers SPE i
has to host, which severely restricts the buffer size, because there must be one output buffer

and two input buffers for each merger, that all must fit into about half the local memory

of an SPE (the other half is for code and variables). Therefore, we devised mappings that

minimize the maximum amount of mergers that one SPE has to host, and thus maximize

the buffer size. We present two such mappings in the next section.

3 Experiments and Simulations

We have implemented the prototype core of a merger routine on a Cell processor from

a Play Station 3. Despite including only 6 SPEs, it corresponds to the processor sold in

blades by IBM. Our routine provides a bandwidth of 1.5 GByte/s. This indicates that

with 8 SPEs concurrently reading and writing data as in [IMKN07], a bandwidth to main

memory of 2× 8× 1.5 = 24 GByte/s would be needed which would saturate the memory

link. Assuming that the fully developed merger in [IMKN07] is more efficient than our

prototype, we see that the bandwidth to main memory is the limiting performance factor

in their design. Conversely, if we can reduce the memory bandwidth needed, we gain a

corresponding factor in performance.

In order to get an impression of the performance of our full algorithm, we implemented a

discrete event simulation2 of the sorting algorithm. As the runtime of the merger core is

only dependent on the size of the output buffer, it is more or less constant. As furthermore

communication and computation are overlapped, we believe the simulation to accurately

reflect the runtime of the full algorithm.

2While the merge algorithm is not very complex, implementing the DMA transfers is cumbersome and low-

level, thus we decided to postpone the full implementation.

94

(a) (b)

Figure 2: Mapping of merger nodes to SPEs

In each step, each SPE runs one merger with enough input data until it has produced one

output buffer full of data. As buffer size, we use 4 KByte for the output buffer (holding

1,024 32-bit integers), and 2 × 4 KByte for the input buffers, in order to allow concurrent

working of a merger and filling of its input with the output of a previous merger. Each

merger receives a share of the SPE’s processing time at least according to its position in

the merge tree. For example, in Fig. 2(b), the merger left in SPE1 receives one half of the

processing power, because it is placed in depth 1 of the merge tree, while the other mergers

receive 1/8 and 1/16 of the processing power, respectively, because they are in depths 3

and 4, respectively. We use a simple round robin scheduling policy in each SPE, where a

merger not ready to run because of insufficient input data or full output buffer is left out.

We have investigated two mappings, depicted in Fig. 2. Both try to place neighboring

mergers in one SPE as often as possible, in order to exploit the load balancing discussed in

the previous section. In mapping (a), the mergers of SPE0 and SPE1 (similarly SPE2 and

SPE3) could have been placed in one SPE, but we decided to give them twice the processor

share to be on the safe side and avoid load balancing and pipeline stall problems. We have

simulated this mapping with 16 input blocks of 220 sorted integers each. The blocks were

randomly chosen and then sorted. In all experiments, the pipeline ran with 100% efficiency

as soon as it was filled. As we realize a 16-to-1 merge, we gain a factor of 2 on the memory

bandwidth in relation to [IMKN07]. Yet, as we need 6 instead of 4 SPEs to do this, our

real improvement is only 2 · 4/6 = 4/3 in this case.

In mapping (b), we have implemented a 32-to-1 merge, with the restriction that no more

than 8 mergers are to be mapped to one SPE. With 20 KByte of buffers for each merger,

this seems to be upper limit. Here each merger has a processing share according to its

95

position in the merge tree. We used 32 input blocks of 220 sorted integers each, chosen as

before. The pipeline ran with an efficiency of 93%, meaning that in 93% of the time steps,

the merger on SPE4 could be run and produced output. In comparison to [IMKN07], our

memory bandwidth decreased by a factor of 2.5. Combined with a pipeline efficiency of

93%, we still gain a factor of 1.86 in performance.

4 Conclusion and Future Work

We have provided a new sorting algorithm for the Cell Processor Architecture that uses a

vectorized merge sort in a pipelined variant to reduce memory bandwidth. Our simulation

results indicate that the performance of a full implementation of our algorithm will show

better performance than previous algorithms. Future work will consist of obtaining this

implementation.

Note that our algorithm is also able to run on multiple Cell processors, as does [IMKN07].

At the beginning, there will be many blocks, and hence many 16-to-1 or 32-to-1 mergers

can be employed. In the end, when nearing the root, we are able to employ a method

already known and mentioned in [IMKN07]: we partition the very large data blocks and

perform merges on the partitions in parallel.

References

[AISW96] Nancy M. Amato, Ravishankar Iyer, Sharad Sundaresan, and Yan Wu. A Comparison
of Parallel Sorting Algorithms on Different Architectures. Technical Report 98-029,
Texas A&M University, January 1996.

[Akl85] Selim G. Akl. Parallel Sorting Algorithms. Academic Press, 1985.

[GBY07] Bugra Gedik, Rajesh Bordawekar, and Philip S. Yu. CellSort: High Performance Sort-
ing on the Cell Processor. In Christoph Koch, Johannes Gehrke, Minos N. Garofalakis,
Divesh Srivastava, Karl Aberer, Anand Deshpande, Daniela Florescu, Chee Yong Chan,
Venkatesh Ganti, Carl-Christian Kanne, Wolfgang Klas, and Erich J. Neuhold, editors,
VLDB, pages 1286–1207. ACM, 2007.

[GEMN07] Michael Gschwind, David Erb, Sid Manning, and Mark Nutter. An Open Source Envi-
ronment for Cell Broadband Engine System Software. Computer, 40(6):37–47, 2007.

[IMKN07] Hiroshi Inoue, Takao Moriyama, Hideaki Komatsu, and Toshio Nakatani. AA-Sort: A
New Parallel Sorting Algorithm for Multi-Core SIMD Processors. In Proc. 16th Int.l
Conf. on Parallel Architecture and Compilation Techniques (PACT), pages 189–198.
IEEE Computer Society, 2007.

[RB07] N. Ramprasad and Pallav Kumar Baruah. Radix Sort on the Cell Broadband Engine. In
Int.l Conf. High Perf. Comuting (HiPC) – Posters, 2007.

96

An optimized ZGEMM implementation for the Cell BE

Timo Schneider1, Torsten Hoefler2, Simon Wunderlich1, Torsten Mehlan1,

and Wolfgang Rehm1

1Technical University of Chemnitz, Strasse der Nationen 62,

Dept. of Computer Science, Chemnitz, 09107 GERMANY

{timos, siwu, tome, rehm}@hrz.tu-chemnitz.de

2Indiana University, Open Systems Lab,

150 S Woodlawn Ave, Bloomington, IN, 47405 USA

htor@cs.indiana.edu

Abstract:
The architecture of the IBM Cell BE processor represents a new approach for de-

signing CPUs. The fast execution of legacy software has to stand back in order to
achieve very high performance for new scientific software. The Cell BE consists of
9 independent cores and represents a new promising architecture for HPC systems.
The programmer has to write parallel software that is distributed to the cores and exe-
cutes subtasks of the program in parallel. The simplified Vector-CPU design achieves
higher clock-rates and power efficiency and exhibits predictable behavior. But to ex-
ploit the capabilities of this upcoming CPU architecture it is necessary to provide
optimized libraries for frequently used algorithms. The Basic Linear Algebra Sub-
programs (BLAS) provide functions that are crucial for many scientific applications.
The routine ZGEMM, which computes a complex matrix–matrix–product, is one of
these functions. This article describes strategies to implement the ZGEMM routine on
the Cell BE processor. The main goal is achieve highest performance. We compare
this optimized ZGEMM implementation with several math libraries on Cell and other
modern architectures. Thus we are able to show that our ZGEMM algorithm performs
best in comparison to the fastest publicly available ZGEMM and DGEMM implemen-
tations for Cell BE and reasonably well in the league of other BLAS implementations.

1 Introduction

Matrix multiplication is used for many standard linear algebra problems, such as inverting

matrices, solving systems of linear equations, and finding determinants and eigenvalues

[Kny01]. Therefore if a new architecture wants to be successful in the scientific computing

environment it is crucial that optimized libraries for problems like matrix multiplication

and alike are freely available.

Our initial intent was to port ABINIT, a quantum mechanical ab-inito simulator [GBC+02,

GCS+00, BLKZ07], to the Cell BE architecture.1 ABINIT heavily uses the BLAS

[LHKK79, DCHH88] function ZGEMM which multiplies two complex matrices and adds

1This research is supported by the Center for Advanced Studies (CAS) of the IBM Böblingen Laboratory as

part of the NICOLL Project.

97

them to a third one. All input matrices and scalars are given in double precision. Differ-

ent groups have already developed optimized matrix multiplication codes for the Cell BE

architecture, but those were not meant to be used by other applications but to demonstrate

the good single-precision capabilities of the architecture [D.07]. They operate on matrices

on a fixed input size, partly use the rather uncommon block data layout for storing the

matrices and only work for single precision floating point numbers. Another possibility

would have been to use PPC64 optimized BLAS libraries [CGG02, DDE+05] like Atlas

[WD98] ot Goto [KR02]. But these libraries do not leverage the potential of the Cell BE

completely because they only use the PPC64 core.

Thus, we decided to implement a Cell optimized version of ZGEMM. In this paper we will

describe the basic algorithm we used as well as the optimization principles we had to apply

to get the current result which we will benchmark, too. This paper is organized as follows:

Section 2 contains background information on relevant aspects of the Cell Broadband En-

gine architecture, Section 3 gives an overview of the ZGEMM Fortran interface; Section 4

shows how to vectorize and optimize the naive implementation of the used algorithm, Sec-

tion 5 gives some benchmarking results and tries to explain them, Section 6 draws some

conclusions and shows directions for further improvement.

2 Cell Broadband Engine Overview

EIB

SXU

LS

MFC

SPE

SXU

LS

MFC

SPE

SXU

LS

MFC

SPE

Power
 coreL1

L2

PPE

M e m o r y

Figure 1: Cell BE architecture

The Cell BE architecture [CD07] is a

multicore microprocessor with one gen-

eral purpose core called Power Process-

ing Element (PPE) and multiple vector

co-processing elements, called Synergistic

Processing Elements (SPE). The PPE is a

stripped-down general purpose core to ad-

minister the SPEs, which handle the com-

putational workload. It is easy to run con-

ventional software on the PPE due to its

compatibility to the PPC64 architecture.

The PPE is connected to the system mem-

ory and the SPEs via the Element Intercon-

nect Bus (EIB), a high-bandwidth circular

data bus. Each SPE hosts some local mem-

ory, called Local Store (LS), an Synergistic

Execution Unit (SXE) and a Memory Flow

Controller (MFC) which connects the SPE

to the EIB. The MFC operates indepen-

dently of the SPU, so memory transactions can be overlapped with computations. Figure

1 gives an overview of the Cell BE architecture.

Let’s take a closer look at the SPEs now, as the performance of our implementation de-

pends solely on our ability to use their full potential. This is not always easy, as SPEs

are special cores: They are meant to fit in the gap between standard desktop PC cores and

special number crunching devices like the Graphics Processing Units (GPUs) in graphics

98

cards. The SPEs can not access the main memory directly, they can only operate on their

Local Store which is capable of holding 256 KiB data. One should not think of the LS

as of a cache in a standard CPU as it is not updated automatically or transparently to the

running process. To get new data into the LS one has to use the Memory Flow Controller

to issue a DMA PUT or GET transfer. The boundaries of DMA transfers from and to SPUs

have to be 16 byte aligned. DMA transfers yield the best performance when multiples of

128 byte are transferred.

The Synergistic Execution Unit is a vector processor which operates on 128 registers,

each 128 bit wide. That means when coping with double precision floating point numbers

(which are 8 byte wide) we can do two similar operations simultaneously if we manage

to put our input data in a single vector. Unfortunately the Cell BE processors available at

the time of writing are very slow when doing double precision arithmetic (1.83 GFlop/s

per SPE [WSO+06], which is 14 times lower than the single precision performance). But

this should improve with future generations of this chip. The performance cited above can

only be reached when fused multiply add instructions are used. These instruction perform

the operation c := a∗b+c or similar and therefore count as two floating point instructions

(FLOP). As all double precision arithmetic instructions need the same number of clock

cycles, these instructions yield the best floating point operation per second (Flop/s) ratio.

3 BLAS/ZGEMM

Basic Linear Algebra Subprograms (BLAS) is an widely used application programming

interface for libraries to perform basic linear algebra operations such as matrix multiplica-

tion. They were first published in 1979 [LHKK79]. Highly optimized implementations of

the BLAS interface have been developed by different vendors or groups for many archi-

tectures.

ZGEMM performs the matrix-matrix operation on input of complex numbers:

C := α · op(A) · op(B) + β · C

Where op(A) specifies if the normal, transposed or conjugated version of the matrix is to

be used. A,B and C are matrices consisting of complex numbers and α and β are complex

scalars. The Fortran interface is:

SUBROUTINE ZGEMM(TRANSA, TRANSB, M, N, K, ALPHA, A, LDA, B,
LDB, BETA, C, LDC)

TRANSA and TRANSB contains the operator to be used on matrix A and B as a single

character which can be n (normal), t (transposed) or c (transposed, conjugated). op(A)
is M by K matrix, op(B) is a K by N matrix, and C is a M by N matrix. Note that M, N and K
refer to the matrices after the operators are applied, not the original input matrices. ALPHA
and BETA correspond to α and β in the equation above. LDA, LDB and LDC specify the

first dimension of the input matrices so it is possible to use ZGEMM the top-left part of the

input matrices only.

The input matrices A, B and C are stored in column major order, as they come from a

program written in Fortran. Figure 2 illustrates the meaning of the different ZGEMM pa-

rameters which deal with the representation of the input matrices.

99

Memory layout :

A

K

M

LDA

A

LDA M

column 1 column K

...

Figure 2: Fortran/ZGEMM Matrix rep-
resentation

The tricky part is the operator: Depending on if its

normal or not, elements which are stored sequen-

tially in memory can be in one row or one column.

As one result element is computed based on one

row of op(A) and one column of op(B), we will

always have to consider the operators for our mem-

ory access.

We investigated works that use Strassen’s or Wino-

grad’s implementation to reduce the asymptotic

complexity of the matrix multiplication [DHSS94].

However, those optimized algorithms work only

with well conditioned matrixes which we can not

guarantee in the general case. Thus, we chose to

implement a traditional O(N3) algorithm for our

ZGEMM.

4 Our ZGEMM implementation

We had to apply two important concepts to be able to design a well-performing ZGEMM
implementation: We partitioned the input data, distributed it among the available SPEs

and vectorized all calculations on order to exploit the SIMD architecture.

4.1 Data Partitioning

As the Local Store of an SPE space is limited to 256KiB, the goal should be to save space

and memory transfers. A first idea was to load parts of a row of op(A) and a column

of op(B) and to compute exactly one element of C. There are some problems with this:

depending on the operator, the rows (or columns) of the matrices are stored sequentially

in memory or scattered with a displacement (of LDx), forcing us to get each element

separately. This would decrease performance, as the MFC operates best with memory

chunks that are multiples of 128 byte in size.

A better idea is to load blocks instead of lines, and perform small matrix-matrix multi-

plications instead of scalar products. This gives us independence from the operator: the

decision whether rows or columns should be used in the scalar product of the matrix mul-

tiplications on the SPEs does not affect performance, as we have random access to the

Local Store. Another advantage is the number of operations. For n elements which fit in

each input buffer of our Local Store, O(n) multiply and add operations can be done with

the scalar product, but O(
√

n3) = O(n1.5) operations can be achieved with small matrix

multiplications. Of course, with more operations on the same amount of local data the

total number of memory transfers is reduced.

4.2 Work Assignment

With our partitioning approach, each part of the result matrix can be independently com-

puted with the block row of op(A) and the block column of op(B). The blocks to be

100

computed are simply distributed circular on the SPEs. Figure 3 illustrates the assignment

scheme for 6 SPEs. The shaded result block is computed using the shaded row in op(A)
and the shaded column in op(B).

1 2 3 4 5 6 1 2

3 4 5 6 1 2 3 4

5 6 1 2 3 4 5 6

1 2 3 4 5 6 . . .
* =

Figure 3: SPE Block assignment

We investigated the use of the PPE with an experimental implementation. The PPE has a

theoretical peak performance of 6.4 GFlop/s. Our code spawns N threads on the PPE, each

of them computes the same chunk of op(C) as an SPE does2, using a PPC970 optimized

BLAS implementation to perform the computation. Despite the given peak performance

of the SPE, we achieved only 1.7 GFlop/s with ATLAS on the PPE, which makes this

partitioning scheme suboptimal. Thus, we did not include the PPE measurements in our

benchmarks.

4.3 Vectorization

In our matrix multiplication, each element is a 128 bit complex number, consisting of 64

bit double precision floating point values for real part and imaginary part. We can safely

assume that only fused multiply add operations are used, as two elements of each matrix

are multiplied and added to the temporary scalar product. One multiply-add operation of

complex numbers a and b added to y (y = y + a · b) is split up like this for its real and

imaginary parts: yre := yre + arebre − aimbim

yim := yim + arebim + aimbre

This makes 4 fused multiply add operations, with 64 bit operands. With the SIMD-ability

of the SPU, two complex multiply-adds can be done instead of one. To use SIMD in-

structions, the real parts and imaginary parts have to be splitted and packed into separate

registers. This can be done with the SPU shuffle instruction. Now the calculation can be

done as described above, and the only thing left to do is to separate the real and imaginary

part into the result registers before we write back into C.

One little obstacle remains: The fused multiply subtract operation on the SPU spu msub(a,
b, c) calculates a · b − c, but we would need c − a · b. To achieve this without adding

further instructions to change the sign, the real part can be calculated as follows:

yre := arebre − ((aimbim) − yre)

In Figure 4 you can see how the blockwise matrix multiplication can be implemented in

C, using the SPU intrinsics. 3

2theoretically, N = 3 should be optimal
3Our code and the tests that were used to obtain the presented benchmark results can be fetched from

http://files.perlplexity.org/zgemm.tar.gz.

101

d e f i n e VPTR ” (v e c t o r d o u b l e ∗) ”

v e c t o r char h i g h d o u b l e = { 0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 ,

1 6 , 1 7 , 1 8 , 1 9 , 2 0 , 2 1 , 2 2 , 2 3 } ;

v e c t o r char l o w d o u b l e = { 8 , 9 , 1 0 , 1 1 , 1 2 , 1 3 , 1 4 , 1 5 ,

2 4 , 2 5 , 2 6 , 2 7 , 2 8 , 2 9 , 3 0 , 3 1 } ;

v e c t o r double r r e ={0 ,0} , r im ={0 ,0} , t r e , t im , s r e , sim ;

f o r (k =0; k < k l e n ; k ++ , aa += a s t e p , bb += b s t e p) {
f im = s p u s h u f f l e (∗ (VPTR aa) , ∗ (VPTR (aa+ a t s t e p)) , l o w d o u b l e) ;

gim = s p u s h u f f l e (∗ (VPTR bb) , ∗ (VPTR bb) , l o w d o u b l e) ;

f r e = s p u s h u f f l e (∗ (VPTR aa) , ∗ (VPTR (aa+ a t s t e p)) , h i g h d o u b l e) ;

g r e = s p u s h u f f l e (∗ (VPTR bb) , ∗ (VPTR bb) , h i g h d o u b l e) ;

t r e = spu nmsub (fim , gim , s r e) ;

t im = spu madd (f r e , gim , sim) ;

s r e = spu msub (f r e , gre , t r e) ;

sim= spu madd (fim , gre , t im) ;

}

r r e = s p u s h u f f l e (s r e , sim , h i g h d o u b l e) ;

r im = s p u s h u f f l e (s r e , sim , l o w d o u b l e) ;

∗ (VPTR cc) = sp u a d d (∗ (VPTR cc) , r r e) ;

∗ (VPTR (cc + 1)) = s p u a d d (∗ (VPTR (cc + 1)) , r im) ;

Figure 4: Inner loop of the blockwise matrix multiplication, implemented in C

5 Benchmarks

This section provides a performance evaluation of our implementation and a qualitative

and quantitative comparison to BLAS implementations on other modern architectures.

 0

 5

 10

 15

 20

 25

 30

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

G
F

lo
p/

s

Matrix size (NxN)

RefBLAS
CellBLAS, PS3, 6 SPUs

CellBLAS, QS20, 8 SPUs
CellBLAS, QS20, 16 SPUs

IBM BLAS (DGEMM), QS20, 8 SPUs

Figure 5: Performance Comparison

The current Cell BE chip’s SPEs

are capable of issuing one dou-

ble precision arithmetic instruc-

tion every six clock cycles. This

instruction needs another seven

cycles until the result is avail-

able in the target register. But

if we assume to execute a very

large number of data-independent

double precision operations we

would get a cycles per instruc-

tion (CPI) value of 6. Consid-

ering FMADD operations and a

vector size of two, the theoretical

peak performance of a single Cell

BE CPU with 8 SPE and a clock

102

rate of 3.2 GHz is

Rpeak =
3.2 ∗ 109 Hz

6
· 8 SPE · 4 Flop/SPE = 17.07 GFlop/s

This is the number in theory, in practical tests (back to back execution of fused multiply

add instructions with no data dependencies) we were able to measure up to 14.5 GFlop/s.

This number is said to be the Cell BE double precision peak performance. [WSO+06]

Even though our implementation supports arbitrary matrices, we benchmarked square ma-

trices to enable easy comparisons to other publications. We used ppu-gcc, version

4.1.1 with the flags -O3 -mabi=altivec -maltivec to compile all PPE code and

spu-gcc, version 4.1.1 with -O3 for the SPE code. The Cell BE specific benchmarks

were run on a 3.2 GHz IBM QS20 Cell Blade, which contains 2 Cell BE processors with 8

SPEs per processor and two 512 MiB RAM banks and a Playstation 3 running at 3.2 GHz

with 200 MiB memory. Both systems run Linux 2.6 (with IBM patches applied).

 0

 2

 4

 6

 8

 10

 12

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

G
F

lo
p/

s

Matrix size (NxN)

cellblas, 8 SPEs
no DMA, cellblas, 8 SPEs

Figure 6: Effects of overlapping the memory accesses with
computation

In our first benchmark (Figure 5),

we compare the performance of

netlib.org’s refblas ZGEMM with

the IBM DGEMM implementa-

tion4 and our optimized imple-

mentation for different matrix

sizes.

The results show that the our im-

plementation performs very well

on Cell BE CPUs. Even though

we tried to tune refblas by us-

ing different numactl configu-

rations (numactl controls which

CPU uses which memory bank),

we were not able to achieve more

than one Gflop. This is due to the

fact that the current compilers do not automatically generate code for the SPUs. Thus,

the refblas implementation used only the rather slow PPC core. We outperform the IBM

DGEMM implementation by large for all different matrix sizes and our code scales very

well to up to 16 SPUs. We can also reproduce similar performance on the specialized

Playstation 3 (PS3) hardware (only 6 SPEs are accessible with Linux).

Another optimization technique that has been proposed [CRDI07] is to overlap memory

(DMA) accesses with computation. However, this increases the code complexity signif-

icantly. To evaluate the potential benefit, we removed all the memory (DMA) accesses

from our implementation to simulate the overlap. This invalidates the results but provides

an upper bound to the performance-gain due to overlap. Figure 6 shows the compari-

son to our implementation. Our experiments show that we could gain up to one Gflop/s

performance with this overlap technique.

4The current IBM BLAS implements no ZGEMM. Thus, we used DGEMM for comparison, because of its

similarity to ZGEMM

103

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 1000 2000 3000 4000 5000 6000 7000

G
F

lo
p/

s

Matrix size (NxN)

RefBLAS
CellBLAS PS3

CellBLAS, 8 SPEs
CellBLAS, 16 SPEs

Big Red
Jeltz
Odin

Sif

Figure 7: Architectural comparison of ZGEMM Perfor-
mance

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

R
ea

ch
ed

 p
ea

k
pe

rf
or

m
an

ce

Matrix size (NxN)

RefBLAS
CellBLAS PS3

CellBLAS, 8 SPEs
CellBLAS, 16 SPEs

ESSL (Big Red)
Veclib (Jeltz)
Goto (Odin)

Goto (Sif)

Figure 8: Relative efficiency of different BLAS implemen-
tations

Our next benchmark compares

the Cell BE and our opti-

mized implementation (currently

the fastest available) with dif-

ferent modern High Performance

Computing (HPC) architectures.

We chose a variety of differ-

ent systems to be able to eval-

uate the suitability of the Cell

BE for scientific calculations us-

ing ZGEMM as an example. The

different systems and their peak

floating point performances are

described in the following. We

leveraged all available processing

units (CPUs/Cores) that share a

common system memory (are in

the same physical node). Thus

we compare our multi-core Cell

BE implementation with other

multi-core BLAS implementa-

tions. The test systems are

described in the following: a

node in Big Red has two dual-

core PowerPC 970 MP proces-

sors (2.5GHz) with 8GB RAM

per node. The peak-performance

(with FMADD) is 40 GFlop/s and

we ran the IBM ESSL library. We

used the Goto BLAS [KR02] li-

brary 1.19 on Odin, a dual CPU

dual-core Opteron running at 2

GHz with a peak performance of

16 GFlop/s, and Sif, a dual CPU

quad-core 1.86 GHz Intel Xeon

with 59.5 GFlop/s peak. The theoretically fastest tested system, Jeltz, as two quad-core

Intel Xeon 3.0 GHz and a peak performance of 96 GFlop/s. Jeltz runs Mac OS X Tiger

and we used the vendor supplied vecLib for our experiments. The absolute performance

results for all those systems are plotted in Figure 5.

Due to memory and CPU time limits, not all matrix sizes could be run on all systems

(e.g., the PS3 had only 200 MiB). Our benchmarks show that the current generation Cell

BE is not really suited to perform double precision floating point calculations because

it is largely outperformed by systems in the same and lower price-range. However, the

specialized low-cost Playstation 3 makes a big difference in this price-performance game

but its limited memory might be a big obstacle to scientific use.

104

Those absolute value comparisons do not allow any qualitative comparisons between the

different libraries. The main problem is the high variance in peak performance. To com-

pare our implementation to other BLAS libraries, we normalized the measured perfor-

mance to the peak performance of the architecture to get an estimate of the efficiency of

use of the floating point units. We expect a pretty high efficiency on the standard super-

scalar and cache-based architectures due to the high spatial and temporal locality in matrix

multiplication algorithms and decades of development. However, the Cell BE represents

a completely new approach of the “explicit cache” (Local Store). Additionally to that, the

Cell architecture introduces additional overheads for loading the code to the SPUs. The

relative performance results are presented in Figure 7. The highly optimized Goto BLAS

implementation delivers the best performance on the available architectures. IBM’s En-

gineering and Scientific Subroutine Library (ESSL) delivers good performance in Power

PPC. Our implementation which explores a new CPU architecture is performing very well

in comparison to the well established ones and even better than Apple’s Veclib.

6 Conclusion and Future Work

Since scientific simulations heavily rely on optimized linear algebra functions we pre-

sented in this article an optimized ZGEMM implementation for the IBM Cell BE processor.

As a part of the BLAS package, the ZGEMM routine performs a complex matrix–matrix

multiplication. We discussed the strategies to distribute data and to exploit the double

precision floating point elements of the SPEs.

The benchmarks showed that the performance of our ZGEMM algorithm achieves up to 70%

of the peak performance and scales linearly from 1 to 16 SPEs. We assume that our code

will also perform well on the next generation Cell BE which supports a fully-pipelined

double precision unit that does not stall 6 cycles after every instruction. We compared the

algorithm with the IBM DGEMM implementation since there is no ZGEMM implementation

available for Cell. We also showed that even without applying double buffering techniques,

the SPEs can be used efficiently under the condition that the number of calculations grow

faster with problem size than the access to memory.

Our ZGEMM implementation shows the best performance of all publicly available ZGEMM
or DGEMM implementations for Cell BE. Thus, our work may serve as guideline for imple-

menting similar algorithms.

References

[BLKZ07] F. Bottin, S. Leroux, A. Knyazev, and G. Zerah. Large scale parallelized ab initio
calculations using a large 3D grid of processors. submitted to Computational Material
Sciences, 2007.

[CD07] Johns C.R. and Brokenshire D.A. Introduction to the Cell Broadband Engine Architec-
ture. IBM Journal of Research and Development, 51:503–519, 2007.

[CGG02] J. Cuenca, D. Gimenez, and J. Gonzalez. Towards the design of an automatically tuned
linear algebra library. Parallel, Distributed and Network-based Processing, 2002. Pro-
ceedings. 10th Euromicro Workshop on, pages 201–208, 2002.

105

[CRDI07] T. Chen, R. Raghavan, J. N. Dale, and E. Iwata. Cell Broadband Engine Architecture
and its first implementationA performance view. IBM Journal of Research and Devel-
opment, 51:559–572, 2007.

[D.07] Hackenberg D. Fast Matrix Multiplication on Cell (SMP) Systems. Technical report,
TU Dresden, Center for Information Services, 2007.

[DCHH88] J. J. Dongarra, J. Du Croz, S. Hammarling, and R. J. Hanson. An extended set of
FORTRAN Basic Linear Algebra Subprograms. In In ACM Trans. Math. Soft., 14
(1988), pp. 1-17, 1988.

[DDE+05] J. Demmel, J. Dongarra, V. Eijkhout, E. Fuentes, A. Petitet, R. Vuduc, R.C. Whaley,
and K. Yelick. Self-adapting linear algebra algorithms and software. Proceedings of
the IEEE, 93(2):293–312, Feb 2005.

[DHSS94] Craig C. Douglas, Michael Heroux, Gordon Slishman, and Roger M. Smith. GEMMW:
a portable level 3 BLAS Winograd variant of Strassen’s matrix-matrix multiply algo-
rithm. J. Comput. Phys., 110(1):1–10, 1994.

[GBC+02] X. Gonze, J.-M. Beuken, R. Caracas, F. Detraux, M. Fuchs, G.-M. Rignanese, L. Sindic,
M. Verstraete, G. Zerah, F. Jollet, M. Torrent, A. Roy, M. Mikami, Ph. Ghosez, J.-Y.
Raty, and D.C. Allan. First-principles computation of material properties: the ABINIT
software project. Computational Materials Science, 25:478–493, 2002.

[GCS+00] X. Gonze, R. Caracas, P. Sonnet, F. Detraux, Ph. Ghosez, I. Noiret, and J. Schamps.
First-principles study of crystals exhibiting an incommensurate phase transition. AIP
Conference Proceedings, 535:163–173, 2000.

[Kny01] Andrew V. Knyazev. Toward the Optimal Preconditioned Eigensolver: Locally Optimal
Block Preconditioned Conjugate Gradient Method. SIAM J. Sci. Comput., 23(2):517–
541, 2001.

[KR02] Goto K. and Geijn R. On reducing TLB misses in matrix multiplication. Technical re-
port tr-2002-55, The University of Texas at Austin, Department of Computer Sciences,
2002.

[LHKK79] C. L. Lawson, R. J. Hanson, D. Kincaid, and F. T. Krogh. Basic Linear Algebra Sub-
programs for FORTRAN usage. In In ACM Trans. Math. Soft., 5 (1979), pp. 308-323,
1979.

[WD98] R. Clint Whaley and Jack J. Dongarra. Automatically tuned linear algebra software. In
Supercomputing ’98: Proceedings of the 1998 ACM/IEEE conference on Supercomput-
ing (CDROM), pages 1–27, Washington, DC, USA, 1998. IEEE Computer Society.

[WSO+06] Samuel Williams, John Shalf, Leonid Oliker, Shoaib Kamil, Parry Husbands, and
Katherine Yelick. The potential of the cell processor for scientific computing. In CF
’06: Proceedings of the 3rd conference on Computing frontiers, pages 9–20, New York,
NY, USA, 2006. ACM.

106

1. Aktuelle und zukünftige Aktivitäten (Bericht des Sprechers)
Die 25. Ausgabe der PARS-Mitteilungen enthält die Beiträge des neunten PASA-Workshops, welcher
die wesentlichen Aktivitäten der Fachgruppe im Jahr 2008 darstellt.

Der neunte PASA-Workshop fand am 26. Februar 2008 im Rahmen der Fachtagung ARCS 2008 in
Dresden statt. Fast 50 Teilnehmer fanden sich an der Technischen Universität Dresden ein. Die zehn
Vorträge deckten ein umfangreiches Themenspektrum ab. Als eingeladener Sprecher hielt Herr Dr.
Norbert Attig einen Vortrag über den Supercomputer JUGENE (Jülich Blue Gene).

Den zum dritten Mal ausgeschriebenen und mit 500 € dotierten Nachwuchspreis hat Martin Schindewolf
von der Universität Karlsruhe mit seinem Beitrag A Generic Tool Supporting Cache Designs and
Optimisation on Shared Memory Systems gewonnen. Der zweite und dritte Preis gingen an Fabian
Nowak und Emeric Kwemou, beide ebenfalls von der Universität Karlsruhe. Das Bild zeigt die
Preisträger zusammen mit den Organisatoren des Workshops beim abendlichen Social-Event.

v.l.n.r.: Prof. Dr. Wolfgang E. Nagel (lokale Organisation), Martin Schindewolf (1. Preis), Fabian
Nowak (2. Preis), Prof. Dr. Wolfgang Karl (als Vertreter des 3. Preisträgers), Prof. Dr. Rolf Hoffmann
(Sprecher der Fachgruppe PARS)
Bild: K. D. Reinartz

GESELLSCHAFT FÜR INFORMATIK E.V.
PARALLEL-ALGORITHMEN, -RECHNERSTRUKTUREN

UND -SYSTEMSOFTWARE

INFORMATIONSTECHNISCHE GESELLSCHAFT IM VDE

PARS

107

Herrn Prof. Dr. Wolfgang E. Nagel (TU Dresden) sei für die lokale Organisation und die Gestaltung der
Abendveranstaltung gedankt. Prof. Dr. Christian Hochberger und Prof. Dr. Rainer G. Spallek (beide TU
Dresden) haben durch eine perfekte Organisation der ARCS 2008 in Dresden den Rahmen für den
Erfolg des PASA-Workshops geschaffen. Herr Prof. Dr. Andreas Koch (TU Darmstadt) hat als
Verantwortlicher für die Workshops die Zusammenstellung der Tagungsbeiträge übernommen. Herrn
Dr.-Ing. Wolfgang Heenes (TU Darmstadt) sei für die technische Organisation des Workshops gedankt.

Im Anschluss an den PARS-Workshop fand eine Sitzung des PARS-Leitungsgremiums statt. Aus dem
Leitungsgremium der Fachgruppe schied Prof. Dr. Werner Erhard (Univ. Jena) auf eigenen Wunsch aus.
Neu berufen wurden Prof. Dr. Dietmar Fey (Univ. Jena), Prof. Dr. Wolfgang E. Nagel (TU Dresden)
und Dr. Andreas Döring (IBM Zürich). Der Sprecher der Fachgruppe, Prof. Dr. Rolf Hoffmann und der
stellvertretende Sprecher, Dr. Karl Dieter Reinartz, wurden bei der turnusmäßigen Wahl in Ihren Ämtern
bestätigt.

PARS hat derzeit 270 Mitglieder, in etwa so viele wie im letzten Jahr. Die Umstellung der Webseiten
auf das zentrale Typo3-System der GI ist mittlerweile erfolgt.

Unser nächster Workshop ist der

22. PARS-Workshop am 4./5. Juni 2009 in Parsberg in der Oberpfalz.

Die nächste Sitzung des PARS-Leitungsgremiums, zu dem auch interessierte PARS-Mitglieder
eingeladen sind, wird am Rande des PARS-Workshops 2009 in Parsberg stattfinden.

Aktuelle Information finden Sie auch auf der PARS-Webpage

http://www.pars.gi-ev.de/

Anregungen und Beiträge für die Mitteilungen können wie üblich an den Sprecher
(hoffmann@informatik.tu-darmstadt.de) gesendet werden. Besonders gedankt sei meinem Mitarbeiter
Herrn Dr. Heenes, der mich in technischen und allgemeinen Verwaltungsaufgaben unterstützt. Er hat
diese PARS-Mitteilungen für den Druck zusammengestellt und gestaltet u. a. den Web-Auftritt von
PARS.

Ich wünsche Ihnen ein gesundes und erfolgreiches Jahr 2009.

Darmstadt, im Dezember 2008 Rolf Hoffmann
 (PARS-Sprecher)

108

2. Zur Historie von PARS
Bereits am Rande der Tagung CONPAR81 vom 10. bis 12. Juni 1981 in Nürnberg wurde von
Teilnehmern dieser ersten CONPAR-Veranstaltung die Gründung eines Arbeitskreises im Rahmen der
GI: Parallel-Algorithmen und -Rechnerstrukturen angeregt. Daraufhin erfolgte im Heft 2, 1982 der GI-
Mitteilungen ein Aufruf zur Mitarbeit. Dort wurden auch die Themen und Schwerpunkte genannt:

1) Entwurf von Algorithmen für
• verschiedene Strukturen (z. B. für Vektorprozessoren, systolische Arrays oder

Zellprozessoren)
• Verifikation
• Komplexitätsfragen

2) Strukturen und Funktionen
• Klassifikationen
• dynamische/rekonfigurierbare Systeme
• Vektor/Pipeline-Prozessoren und Multiprozessoren
• Assoziative Prozessoren
• Datenflussrechner
• Reduktionsrechner (demand driven)
• Zellulare und Systolische Systeme
• Spezialrechner, z. B. Baumrechner und Datenbank-Prozessoren

3) Intra-Kommunikation
• Speicherorganisation
• Verbindungsnetzwerke

4) Wechselwirkung zwischen paralleler Struktur und Systemsoftware
• Betriebssysteme
• Compiler

5) Sprachen
• Erweiterungen (z. B. für Vektor/Pipeline-Prozessoren)
• (automatische) Parallelisierung sequentieller Algorithmen
• originär parallele Sprachen
• Compiler

6) Modellierung, Leistungsanalyse und Bewertung
• theoretische Basis (z. B. Q-Theorie)
• Methodik
• Kriterien (bezüglich Strukturen)
• Analytik

In der Sitzung des Fachbereichs 3 ‚Architektur und Betrieb von Rechensystemen’ der Gesellschaft für
Informatik am 22. Februar 1983 wurde der Arbeitskreis offiziell gegründet. Nachdem die Mitgliederzahl
schnell anwuchs, wurde in der Sitzung des Fachausschusses 3.1 ‚Systemarchitektur’ am 20. September
1985 in Wien der ursprüngliche Arbeitskreis in die Fachgruppe FG 3.1.2 ‚Parallel- Algorithmen und -
Rechnerstrukturen’ umgewandelt.

Während eines Workshops vom 12. bis 16. Juni 1989 in Rurberg (Aachen) - veranstaltet von den Herren
Ecker (TU Clausthal) und Lange (TU Hamburg-Harburg) - wurde vereinbart, Folgeveranstaltungen
hierzu künftig im Rahmen von PARS durchzuführen.

Beim Workshop in Arnoldshain sprachen sich die PARS-Mitglieder und die ITG-Vertreter dafür aus, die
Zusammenarbeit fortzusetzen und zu verstärken. Am Dienstag, dem 20. März 1990 fand deshalb in

109

München eine Vorbesprechung zur Gründung einer gemeinsamen Fachgruppe PARS statt. Am 6. Mai
1991 wurde in einer weiteren Besprechung eine Vereinbarung zwischen GI und ITG sowie eine
Vereinbarung und eine Ordnung für die gemeinsame Fachgruppe PARS formuliert und den beiden
Gesellschaften zugeleitet. Die GI hat dem bereits 1991 und die ITG am 26. Februar 1992 zugestimmt.

3. Bisherige Aktivitäten
Die PARS-Gruppe hat in den vergangenen Jahren mehr als 20 Workshops durchgeführt mit Berichten
und Diskussionen zum genannten Themenkreis aus den Hochschulinstituten,
Großforschungseinrichtungen und der einschlägigen Industrie. Die Industrie - sowohl die Anbieter von
Systemen wie auch die Anwender mit speziellen Problemen - in die wissenschaftliche Erörterung
einzubeziehen war von Anfang an ein besonderes Anliegen. Durch die immer schneller wachsende Zahl
von Anbietern paralleler Systeme wird sich die Mitgliederzahl auch aus diesem Kreis weiter vergrößern.

Neben diesen Workshops hat die PARS-Gruppe die örtlichen Tagungsleitungen der CONPAR-
Veranstaltungen:

CONPAR 86 in Aachen,
CONPAR 88 in Manchester,
CONPAR 90 / VAPP IV in Zürich und
CONPAR 92 / VAPP V in Lyon
CONPAR 94/VAPP VI in Linz

wesentlich unterstützt. In einer Sitzung am 15. Juni 1993 in München wurde eine Zusammenlegung der
Parallelrechner-Tagungen von CONPAR/VAPP und PARLE zur neuen Tagungsserie EURO-PAR
vereinbart, die vom 29. bis 31. August 1995 erstmals stattfand:

Euro-Par’95 in Stockholm

Zu diesem Zweck wurde ein „Steering Committee” ernannt, das europaweit in Koordination mit
ähnlichen Aktivitäten anderer Gruppierungen Parallelrechner-Tagungen planen und durchführen wird.
Dem Steering Committee steht ein „Advisory Board” mit Personen zur Seite, die sich in diesem Bereich
besonders engagieren. Die offizielle Homepage von Euro-Par ist http://www.euro-par.org/.
Weitere bisher durchgeführte Veranstaltungen:

Euro-Par’96 in Lyon
Euro-Par’97 in Passau
Euro-Par’98 in Southampton
Euro-Par’99 in Toulouse
Euro-Par 2000 in München
Euro-Par 2001 in Manchester
Euro-Par 2002 in Paderborn
Euro-Par 2003 in Klagenfurt
Euro-Par 2004 in Pisa
Euro-Par 2005 in Lissabon
Euro-Par 2006 in Dresden
Euro-Par 2007 in Rennes
Euro-Par 2008 in Gran Canaria

Außerdem war die Fachgruppe bemüht, mit anderen Fachgruppen der Gesellschaft für Informatik
übergreifende Themen gemeinsam zu behandeln: Workshops in Bad Honnef 1988, Dagstuhl 1992 und
Bad Honnef 1996 (je zusammen mit der FG 2.1.4 der GI), in Stuttgart (zusammen mit dem Institut für
Mikroelektronik) und die PASA-Workshop-Reihe 1991 in Paderborn, 1993 in Bonn, 1996 in Jülich,
1999 in Jena, 2002 in Karlsruhe, 2004 in Augsburg (jeweils gemeinsam mit der GI-Fachgruppe 0.1.3
‚Parallele und verteilte Algorithmen (PARVA)’).

110

PARS-Mitteilungen/Workshops:
Aufruf zur Mitarbeit, April 1983 (Mitteilungen Nr. 1)
Erlangen, 12./13. April 1984 (Mitteilungen Nr. 2)
Braunschweig, 21./22. März 1985 (Mitteilungen Nr. 3)
Jülich, 2./3. April 1987 (Mitteilungen Nr. 4)
Bad Honnef, 16.-18. Mai 1988 (Mitteilungen Nr. 5, gemeinsam mit der GI-Fachgruppe 2.1.4

‘Alternative Konzepte für Sprachen und Rechner’)
München Neu-Perlach, 10.-12. April 1989 (Mitteilungen Nr. 6)
Arnoldshain (Taunus), 25./26. Januar 1990 (Mitteilungen Nr. 7)
Stuttgart, 23./24. September 1991, “Verbindungsnetzwerke für Parallelrechner und Breitband-

Übermittlungssysteme” (Als Mitteilungen Nr. 8 geplant, gemeinsam mit ITG-FA 4.1 und 4.4 und mit
GI/ITG FG Rechnernetze, aber aus Kostengründen nicht erschienen. Es wird deshalb stattdessen auf
den Tagungsband des Instituts für Mikroelektronik Stuttgart hingewiesen.)

Paderborn, 7./8. Oktober 1991, “Parallele Systeme und Algorithmen” (Mitteilungen Nr. 9, 2. PASA-
Workshop)

Dagstuhl, 26.-28. Februar 1992, “Parallelrechner und Programmiersprachen” (Mitteilungen Nr. 10,
gemeinsam mit der GI-Fachgruppe 2.1.4 ‘Alternative Konzepte für Sprachen und Rechner’)

Bonn, 1./2. April 1993, “Parallele Systeme und Algorithmen” (Mitteilungen Nr. 11, 3. PASA-
Workshop)

Dresden, 6.-8. April 1993, “Feinkörnige und Massive Parallelität” (Mitteilungen Nr. 12, zusammen mit
PARCELLA)

Potsdam, 19./20. September 1994 (Mitteilungen Nr. 13, Parcella fand dort anschließend statt)
Stuttgart, 9.-11. Oktober 1995 (Mitteilungen Nr. 14)
Jülich, 10.-12. April 1996, “Parallel Systems and Algorithms” (4. PASA-Workshop), Tagungsband

erschienen bei World Scientific 1997)
Bad Honnef, 13.-15. Mai 1996, zusammen mit der GI-Fachgruppe 2.1.4 ‘Alternative Konzepte für

Sprachen und Rechner’ (Mitteilungen Nr. 15)
Rostock, (Warnemünde) 11. September 1997 (Mitteilungen Nr. 16, im Rahmen der ARCS’97 vom 8.-

11. September 1997)
Karlsruhe, 16.-17. September 1998 (Mitteilungen Nr. 17)
Jena, 7. September 1999, “Parallele Systeme und Algorithmen” (5. PASA-Workshop im Rahmen der

ARCS’99)
An Stelle eines Workshop-Bandes wurde den PARS-Mitgliedern im Januar 2000 das Buch ‘SCI:

Scalable Coherent Interface, Architecture and Software for High-Performance Compute Clusters‘,
Hermann Hellwagner und Alexander Reinefeld (Eds.) zur Verfügung gestellt.

München, 8.-9. Oktober 2001 (Mitteilungen Nr. 18)
Karlsruhe, 11. April 2002, “Parallele Systeme und Algorithmen” (Mitteilungen Nr. 19, 6. PASA-

Workshop im Rahmen der ARCS 2002)
Travemünde, 5./6. Juli 2002, Brainstorming Workshop “Future Trends” (Thesenpapier in Mitteilungen

Nr. 19)
Basel, 20./21. März 2003 (Mitteilungen Nr. 20)
Augsburg, 26. März 2004 (Mitteilungen Nr. 21)
Lübeck, 23./24. Juni 2005 (Mitteilungen Nr. 22)
Frankfurt/Main, 16. März 2006 (Mitteilungen Nr. 23)
Hamburg, 31. Mai / 1. Juni 2007 (Mitteilungen Nr. 24)
Dresden, 26. Februar 2008 (Mitteilungen Nr. 25)

111

4. Mitteilungen (ISSN 0177-0454)

Bisher sind 25 Mitteilungen zur Veröffentlichung der PARS-Aktivitäten und verschiedener Workshops
erschienen. Darüberhinaus enthalten die Mitteilungen Kurzberichte der Mitglieder und Hinweise von
allgemeinem Interesse, die dem Sprecher zugetragen werden.

Teilen Sie - soweit das nicht schon geschehen ist - Tel., Fax und E-Mail-Adresse der GI-Geschäftsstelle
gimv@gi-ev.de mit für die zentrale Datenerfassung und die regelmäßige Übernahme in die PARS-
Mitgliederliste. Das verbessert unsere Kommunikationsmöglichkeiten untereinander wesentlich.

5. Vereinbarung
Die Gesellschaft für Informatik (GI) und die Informationstechnische Gesellschaft im VDE (ITG)
vereinbaren die Gründung einer gemeinsamen Fachgruppe

Parallel-Algorithmen, -Rechnerstrukturen und -Systemsoftware,

die den GI-Fachausschüssen bzw. Fachbereichen:

FA 0.1 Theorie der Parallelverarbeitung
FA 3.1 Systemarchitektur
FB 4 Informationstechnik und technische Nutzung der Informatik

und den ITG-Fachausschüssen:

FA 4.1 Rechner- und Systemarchitektur
FA 4.2/3 System- und Anwendungssoftware

zugeordnet ist.

Die Gründung der gemeinsamen Fachgruppe hat das Ziel,

- die Kräfte beider Gesellschaften auf dem genannten Fachgebiet zusammenzulegen,
- interessierte Fachleute möglichst unmittelbar die Arbeit der Gesellschaften auf

diesem Gebiet gestalten zu lassen,
- für die internationale Zusammenarbeit eine deutsche Partnergruppe zu haben.

Die fachliche Zielsetzung der Fachgruppe umfasst alle Formen der Parallelität wie

- Nebenläufigkeit
- Pipelining
- Assoziativität
- Systolik
- Datenfluss
- Reduktion
 etc.

und wird durch die untenstehenden Aspekte und deren vielschichtige Wechselwirkungen umrissen.
Dabei wird davon ausgegangen, dass in jedem der angegebenen Bereiche die theoretische Fundierung
und Betrachtung der Wechselwirkungen in der Systemarchitektur eingeschlossen ist, so dass ein
gesonderter Punkt „Theorie der Parallelverarbeitung“ entfällt.

112

1. Parallelrechner-Algorithmen und -Anwendungen

- architekturabhängig, architekturunabhängig
- numerische und nichtnumerische Algorithmen
- Spezifikation
- Verifikation
- Komplexität
- Implementierung

2. Parallelrechner-Software

- Programmiersprachen und ihre Compiler
- Programmierwerkzeuge
- Betriebssysteme

3. Parallelrechner-Architekturen

- Ausführungsmodelle
- Verbindungsstrukturen
- Verarbeitungselemente
- Speicherstrukturen
- Peripheriestrukturen

4. Parallelrechner-Modellierung, -Leistungsanalyse und -Bewertung

5. Parallelrechner-Klassifikation, Taxonomien

Als Gründungsmitglieder werden bestellt:

von der GI: Prof. Dr. A. Bode, Prof. Dr. W. Gentzsch, R. Kober, Prof. Dr. E. Mayr, Dr. K. D.
Reinartz, Prof. Dr. P. P. Spies, Prof. Dr. W. Händler

von der ITG: Prof. Dr. R. Hoffmann, Prof. Dr. P. Müller-Stoy, Dr. T. Schwederski, Prof. Dr.
Swoboda, G. Valdorf

113

Ordnung der Fachgruppe
Parallel-Algorithmen, -Rechnerstrukturen und -Systemsoftware

1. Die Fachgruppe wird gemeinsam von den Fachausschüssen 0.1, 3.1 sowie dem Fachbereich 4 der
Gesellschaft für Informatik (GI) und von den Fachausschüssen 4.1 und 4.2/3 der
Informationstechnischen Gesellschaft (ITG) geführt.

2. Der Fachgruppe kann jedes interessierte Mitglied der beteiligten Gesellschaften beitreten. Die
Fachgruppe kann in Ausnahmefällen auch fachlich Interessierte aufnehmen, die nicht Mitglied einer der
beteiligten Gesellschaften sind. Mitglieder der FG 3.1.2 der GI und der ITG-Fachgruppe 6.1.2 werden
automatisch Mitglieder der gemeinsamen Fachgruppe PARS.

3. Die Fachgruppe wird von einem ca. zehnköpfigen Leitungsgremium geleitet, das sich paritätisch aus
Mitgliedern der beteiligten Gesellschaften zusammensetzen soll. Für jede Gesellschaft bestimmt deren
Fachbereich (FB 3 der GI und FB 4 der ITG) drei Mitglieder des Leitungsgremiums: die übrigen werden
durch die Mitglieder der Fachgruppe gewählt. Die Wahl- und die Berufungsvorschläge macht das
Leitungsgremium der Fachgruppe. Die Amtszeit der Mitglieder des Leitungsgremiums beträgt vier
Jahre. Wiederwahl ist zulässig.

4. Das Leitungsgremium wählt aus seiner Mitte einen Sprecher und dessen Stellvertreter für die Dauer
von zwei Jahren; dabei sollen beide Gesellschaften vertreten sein. Wiederwahl ist zulässig. Der Sprecher
führt die Geschäfte der Fachgruppe, wobei er an Beschlüsse des Leitungsgremiums gebunden ist. Der
Sprecher besorgt die erforderlichen Wahlen und amtiert bis zur Wahl eines neuen Sprechers.

5. Die Fachgruppe handelt im gegenseitigen Einvernehmen mit den genannten Fachausschüssen. Die
Fachgruppe informiert die genannten Fachausschüsse rechtzeitig über ihre geplanten Aktivitäten.
Ebenso informieren die Fachausschüsse die Fachgruppe und die anderen beteiligten Fachausschüsse
über Planungen, die das genannte Fachgebiet betreffen. Die Fachausschüsse unterstützen die
Fachgruppe beim Aufbau einer internationalen Zusammenarbeit und stellen ihr in angemessenem
Umfang ihre Publikationsmöglichkeiten zur Verfügung. Die Fachgruppe kann keine die
Trägergesellschaften verpflichtenden Erklärungen abgeben.

6. Veranstaltungen (Tagungen/Workshops usw.) sollten abwechselnd von den Gesellschaften organisiert
werden. Kostengesichtspunkte sind dabei zu berücksichtigen.

7. Veröffentlichungen, die über die Fachgruppenmitteilungen hinausgehen, z. B. Tagungsberichte,
sollten in Abstimmung mit den den Gesellschaften verbundenen Verlagen herausgegeben werden. Bei
den Veröffentlichungen soll ein durchgehend einheitliches Erscheinungsbild angestrebt werden.

8. Die gemeinsame Fachgruppe kann durch einseitige Erklärung einer der beteiligten Gesellschaften
aufgelöst werden. Die Ordnung tritt mit dem Datum der Unterschrift unter die Vereinbarung über die
gemeinsame Fachgruppe in Kraft.

114

CALL FOR PAPERS
22. PARS - Workshop am 4./5. Juni 2009

Parsberg in der Oberpfalz

http://www.ra.informatik.tu-darmstadt.de/pars/2009/

Ziel des PARS-Workshops ist die Vorstellung wesentlicher Aktivitäten im Arbeitsbereich von PARS und ein damit verbundener
Gedankenaustausch. Mögliche Themenbereiche sind etwa:

• Parallele Algorithmen (Beschreibung, Komplexität, Anwendungen)
• Parallele Rechenmodelle und parallele Architekturen
• Parallele Programmiersprachen und Bibliotheken
• Parallele Programmierung und Programmparallelisierung
• Software Engineering für parallele und verteilte Systeme
• Vernetzte Systeme und Anwendungen, Grid Computing, Cloud Computing
• Verbindungsstrukturen und Hardwareaspekte (z. B. rekonfigurierbare Systeme)
• Neue Technologien und Architekturen (SoC, Multicores, PIM , STM etc.)
• Alternative Technologien (Quantencomputing, DNA-Computing)
• Parallel Organic Computing
• Parallelverarbeitung im Unterricht (Erfahrungen, E-Learning)
• Parallele Methoden und verteiltes Rechnen in der Bioinformatik

Die Sprache des Workshops ist Deutsch. Vorträge und Beiträge in Englisch sind ebenfalls willkommen. Für jeden Beitrag sind
maximal 10 DIN A4 Seiten vorgesehen. Die Workshop-Beiträge werden als PARS-Mitteilungen (ISSN 0177-0454) publiziert. Es ist
eine Workshopgebühr von ca. 100 € geplant.

Termine: Vortragsanmeldungen als Volltext oder in einer Kurzfassung von 2 bis 4 Seiten sind bis zum

6. März 2009 in elektronischer Form unter folgendem Link einzureichen:
http://www.ra.informatik.tu-darmstadt.de/pars/2009/papersubmission/

 Benachrichtigung der Autoren bis 10. April 2009
Druckfertige Ausarbeitungen bis 30. September 2009 (nach dem Workshop)

Programmkomitee: H. Burkhart, Basel • A. Döring, Zürich • D. Fey, Jena • R. Hoffmann, Darmstadt • F. Hoßfeld, Jülich
W. Karl, Karlsruhe • J. Keller, Hagen • Chr. Lengauer, Passau • E. Maehle, Lübeck • E. W. Mayr, München
F. Meyer auf der Heide, Paderborn • W. E. Nagel, Dresden • K. D. Reinartz, Höchstadt • H. Schmeck,
Karlsruhe • P. Sobe, Lübeck • T. Ungerer, Augsburg • H. Weberpals, Hamburg Harburg

Nachwuchspreis: Der beste Beitrag, der auf einer Bachelor/Studien-, Diplom/Masterarbeit oder Dissertation basiert, und von
dem Autor/der Autorin selbst vorgetragen wird, soll auf dem Workshop von der Fachgruppe PARS mit
einem Preis (dotiert mit 500 €) ausgezeichnet werden.

Veranstalter: GI/ITG-Fachgruppe PARS, http://www.pars.gi-ev.de

Organisation: Prof. Dr. Wolfgang Karl, Institut für Technische Informatik
Universität Karlsruhe (TH), Kaiserstraße 12, D-76128 Karlsruhe
Tel.: 0721-608-3771, Fax: 0721-608-3962, E-Mail: karl@ira.uka.de

Prof. Dr.-Ing. Rolf Hoffmann (PARS-Sprecher), FG Rechnerarchitektur, FB Informatik,
TU Darmstadt, Hochschulstr. 10, D-64289 Darmstadt
Tel.: 06151-16-3611/3606, Fax: 06151-165410, E-Mail: hoffmann@informatik.tu-darmstadt.de

Technische
Organisation: Dr.-Ing. Wolfgang Heenes, FG Rechnerarchitektur, FB Informatik, TU Darmstadt, Hochschulstr. 10, D-

64289 Darmstadt, Tel.: 06151-165312, Fax: 06151-165410, E-Mail: heenes@ra.informatik.tu-darmstadt.de

Dr. Rainer Buchty, Institut für Technische Informatik, Universität Karlsruhe (TH), Kaiserstraße 12, D-76128
Karlsruhe, Tel.: 0721-608-8768, Fax: 0721-608-3962, E-Mail: buchty@ira.uka.de

GESELLSCHAFT FÜR INFORMATIK E.V.
PARALLEL-ALGORITHMEN, -RECHNERSTRUKTUREN

UND -SYSTEMSOFTWARE

INFORMATIONSTECHNISCHE GESELLSCHAFT IM VDE

PARS

115

���������

�����������	��
�	���
��������
��	������������
��
���������������

���������	������������	����������	�	��������

����������	�
����

��
�	����	���������	������

	

��������������
�������������

�	���
���	����

�������������� !����∀�#∃�� � %&�
∋∃���(�)∗+��,,−

�	�����������������������������	�������� ��!��������
����
���������
����
�����
�	�����∀
�������#��
���
���	�
��
�������������
�����!�
�#���������	���	���!���∃����������������!���������������������#�
�����������
�
����
���%���
∀!&�
	������∀����
	�
	���#�����#��
������#��
����!�
�#��
�������������!���������
����������∀��
∋���
���∀��∀!�����������������∀���
����(��)�������
	��∗����	�
�����������#�∀
����������	�
��
��������
������������∀�����	�
��
���������
	������������������∀!&�
	�������������
	�������������#��
����!�
�#��
��
�������
	�������!������#�
��������
	����!�
�#�&��	��	�#��	
�∀����
������∀�#�������##�����
��������
�������
�����+�
	������
��������∀����
�����
	��������������,�∗��
	��������������������������
	���������&��
�
���
������
���������#���
��
�����#�������#��
������	�
��
�����������	��−������&��������∀∀����	��
����!�
	��
.�∀�
�/�������
!�������	��∀��!&��	��	�	����������
	��∀������������#�
����
��	��∀��!���	��∀�����0��������	��
���������������������������∀∀�������∀��	������
	�����������,��
����1�
��������#��
�����������∋,1��(�
����������
���
	������������&���
	���������∀��
������������∀∀��������
���
�����#�
�����2
�����������������
	����
���
����
�����������∀���
���������������∀����������
	��3�����∀�����!�
�#�����	�
��
������∀��&������
�������������
���
�������
�
������������∀∀����������
����
�
	�������������

��.�(��������������
	������������
���
�����#�
��������∀&������∀��	����������	������������������
	��
��∀∀������
������

� 0����!����������&���������#��
����
� ��#��
������	�
��
����
���������	����#�∀
�������&�#�#��!��!�
�#�&���������∀∀�∀���#��
����
� ����
�����!�
�#����	�
��
��������	����������������∀���!�
�#�����	���������������
�����
�)����
�����!�
�#�����∀��������
���
�∀�#�
���
����	���∀���&�#�#��!�#�����#��
&�������

#�����#��
&�������)��
� �!�
�#������
��������4��
��������������������#��
�������	����������������&�����∀�����
��
��
�

�������&�����∀���#��
�����∀�
���#�&����	�
��
����#���∀���&�����#���∀������
�)�������������
���#�����#��
�������∀��������
	�
	����
���∀���������
���∀�����∀
�������∀��������5�
���&�

��∀�����������
���&���∀����
�#�5�
���&���∀��	��∀���&�������∀�����
��
����
��	��4����
� 0#��������!�
�#�����∀��������
���
�∀�#�
���
�����	�
��
���&���##�����
���&��������#�
	���∀�����&�

�������∀���
�����
� 1�
���∗����
��������6������#��
�������������
	������������#���∀������

���#���������	��∀����������
	����	�
	��∀��∗�����������
�
	������������������
�
	

��������������
���������������7�������	��∀��������#�

����������������
�����
����#�
���	�!��	��∀�����
���#�

�������������
�����������,1����
!∀��∋�����	

�������������������#�∀�����
	����	
#∀(�������
�
�2�����8���������

��(/�0�.��� ���∃�(��!��(�.���!�&�7������∀���������∗�	��������
�
����∀����
	���
	��
��	����∀����������
	��
�����������������∀���
�������#���������	��∀����������
	����	��#��∀������
∀!�
��
	�����∗�	��������
�
����∀��
�	����39���;<	����∋	��	���=��������	����������(�

��.�(∃��∃���∃���
7��������#�����������∀���� 8�
	�)�
��������>
1�
�����
������������
����� �>
	�1���#�������>
��#��������!��������� 8�
	�.���#�������>

116

http://www.springer.de/comp/lncs/authors.html
http://www.ida.ing.tu-bs.de/noncms/arcs09/
http://www.ida.ing.tu-bs.de/arcs09/

�����������	
������

����(�!��0��(�&�
?∀�����+���∗�����&��/�+������	����&�.0
�	���
����?≅∀∀�����	∀���&�/�������
!����;�������&�.0

����0��(�&
�	���
����;��	������&����	����	��/�������
<
�.������&�.0�
�
��	���Α���&�.�∀�
�/�������
!�������	��∀��!&�1,

��(/�0�.��� ���∃�(��!��0��(&
39���;<	���&�/�������
!����;�������&�.0

������������	

��
Α��∀����&��/�+������	����&�.0
���	��∀����∀��&�/�������
!����0�������	&�/Β
1�����+��	��5���	&�/�������
!������∀��������−�����&�/�
?��	��∀�+���∀&��/�+������	����&�.0
6��∀∀�#�+����
&�����
���!�
�#������/�������
!����Χ��∗&�/Β
����
�+���&��/�?����	&�.0
Β����.��+����	���&�6	��
�/�������
!&�+0
/���+���∗��	�∀
�&�/�������
!����Β��∀���	�&�.0�
3�����������&��	��;����Β����7�∀!
��	����/�������
!&��1
3�����������&�10���−.&�,�����&�7��
���∀&�7�
,����������&�/%�6�&�+�
;��∗���������∀&��/�0���	����&�1,
%���������3����5��∀�&�/7�&�0�
�
�����.������&�−1�−��������&�%�
1�∗�
���.�#����∀��&�/�������
!����∆��
����&���
�∀����%����	�&�/�������
!����,��5&���
%����5���%�������&�7�∀�#�&�−�
+Ε����%���∗�&�0�������	&�/Β
Α������6����&�/�������
!����7�����&�.0
����	���;�&�����∀�1�
����∀�/�������
!&�Β�
��������;��∗�������&��/�?≅��	��&�.0
���������;���&�����∀�1�
����∀�/�������
!&�Β�
7��∀��−����&�07%,�,�������&����
5��∀���
��	���−�	�	���&�Β!��	��/�������
!&�37
3�������−���∀�∗�&�/�������
!����Φ�����∀���&��/
?���∀��3�!���∀�&�−?0�&�+0
6��
�3�����&���∀∀���/�������
!�������	��∀��!&�00
+���3���∀��∗&��/�.�∀�
&�1,�
Α�∀������Β��∀&�/�������
!����Β��∀���	�&�.0
?���∀���Β�
������&�%)��;�����/�����������
�&�6�����
��������Β��	&��/�.��#�
��
&�.0
Β�5!�5
���Β��	����∗�&�,����/�������
!&��0
��!����,�∀��&�/�������
!�����	����∀!&�6�

7��∀�,�∗����5&�/�������
!����7�����&�.0
3���	���?�&�;�����/�������
!&�3�
0��∗�?��	∀�&�/�������
<
�5��,≅���∗&�.0
3���?�����&����	����∀�/�������
!����.��#��∗&�.Β
��#�?��
��&�∆�����������	&�/�
7�
���?������∀&�/�������
!����.��
#���&�.0
.����#���?�∀�Ε����&�/,+�+�����∀&�+0
1��	��1������&�/7�&�0�
�∀�2�)���∀��∀�&�/��.&�/�
0#���)5��&���?&�/Β
���!�7�#��
�∀&�/�������
!�����#�
����#&�1,
+���	���
���	�∀∀��������&����#�����6&�.0
7����∀�������
&�/�������
Γ�7��∀�����
���&����∀����&�%��
Χ�����∗�����5�����&�/�������
!�����!����&��Χ
;��
#�
���	#��∗&�/�������
!����Β��∀���	�&�.0
Β���
�����	���&�6����������	&�/�
6�������#�
&�/�������
!��������
�&�1,
,����∀������&��/�,�����&�7�
�������6�����∀∀�∗&��/�.������&�.0
7�
����
���∗��
�&����������?�∀∀���/�������
!&�/�
+����∀�������&�/�������
!�����	��Ε�	&��0
3��#����∗�∀�&���#�����/�������
!�������	��∀��!&�%−
3≅���������	&�/�������
<
�0�∀�����&�.0
,�
	����	��∀�&�0�;�Ι����	&��;
.������	�#��&�−#�����∀���∀∀����,�����&�/Β
7�������������&�/�������
!�����!����&��Χ
6��	������9�
��&�0�;�Ι����	&��;
�	���/������&�/�������
!������������&�.0
?�
���∆�∀���&�/7�&�0�
�
��	����∆��∀∀�&�����∀��&�%�
,������∆��
��&�,������+∀����/�������
!���������&��)�
Β∀����Α�∀���	#��
&�/�������
!����%���∗���
&�.0
,�����������Χ���&��
�%�������ϑ������/�������
!&���
��#��Χ�	��&��	�∀���6����&�%�

117

The 15th International European Conference on
Parallel and Distributed Computing

(Euro-Par 2009)

http://europar2009.ewi.tudelft.nl

europar2009@tudelft.nl

Delft University of Technology, Delft, The Netherlands

August 25-28, 2009

SUBMISSION DEADLINES:

Abstracts: January 24, 2009

Full papers: January 31, 2009

Euro-Par is an annual series of international conferences dedicated to the promotion and
advancement of all aspects of parallel and distributed computing.

Euro-Par focuses on all aspects of hardware, software, algorithms and applications in this field. The
objective of Euro-Par is to provide a forum for the promotion of parallel and distributed computing
both as an industrial technique and an academic discipline, extending the frontier of both the state
of the art and the state of the practice.

The following topics will be covered by regular Euro-Par 2009 sessions:

1. Support tools and environments
2. Performance prediction and evaluation
3. Scheduling and load balancing
4. High performance architectures and compilers
5. Parallel and distributed databases
6. Grid, cluster, and cloud computing
7. Peer to peer computing
8. Distributed systems and algorithms
9. Parallel and distributed programming
10. Parallel numerical algorithms
11. Multicore and manycore programming
12. Theory and algorithms for parallel computation
13. High performance networks
14. Mobile and ubiquitous computing

Full details on the topics, including topic descriptions and chairs, are available on the Euro-Par
2009 website (http://europar2009.ewi.tudelft.nl). The conference will feature tutorials and invited
talks. Co-located workshops are also planned.

Paper Submission guidelines

Full papers should not exceed 10 pages in the Springer LNCS style. Paper submission will be
performed electronically via the conference website in PDF format. Papers accepted for publication
must also be supplied in source form (LaTeX or Word).

118

Papers must offer original contributions regarding the theory and practice of parallel and distributed
computing. Full submission guidelines are available on the conference website. Only contributions
not submitted elsewhere for publication will be considered.

Authors must submit their papers to the specific topic they judge most appropriate. Details on
topics, including descriptions and chairs, are available on the conference website.

All accepted papers will be included in the conference proceedings, published by Springer in the
LNCS series. Authors of accepted papers will be requested to sign a Springer copyright form.

Important Dates

Abstracts due January 24, 2009
Full papers due January 31, 2009
Decision notification May 2, 2009
Camera-ready full papers May 25, 2009

Call for Additional Conference Workshops

Euro-Par 2009 will feature a series of satellite workshops on August 24-25.

Proposals for workshops, covering a specific theme and lasting between half a day and a full day,
are encouraged and solicited until April 1, 2009. Collective workshop proceedings are published in
a separate LNCS Euro-Par 2009 workshop volume after the conference. The principal
coordinator of each workshop will appear as editor of the workshop volume.

Please contact the Conference Chairs (europar2009@tudelft.nl) for
additional details and proposals.

Venue

The Euro-Par 2009 conference will be held on the campus of Delft University of Technology,
which was founded in 1842 by King William II and which is the oldest and largest Technical
University in the Netherlands. It is well established as one of the leading technical universities in
the world.

Delft is a small, historical town dating back to the 13th century. Delft has many old buildings and
small canals and has a lively atmosphere. The city offers a large variety of hotels and restaurants.
Many other places of interest (e.g., Amsterdam and The Hague) are within one hour distance of
traveling.

Traveling to Delft is easy. Delft is close to Amsterdam Schiphol Airport (60 km, 45 minutes by
train), which has direct connections from all major airports worldwide. Delft also has excellent train
connections to the rest of Europe.

Conference Co-Chairs

• Henk Sips, TU Delft, General Chair
• Dick Epema, TU Delft, Program Chair
• Hai Xiang Lin, TU Delft, Workshop Chair

119

PARS-Beiträge

Studenten 5,00 €
GI-Mitglieder 7,50 €
studentische Nichtmitglieder 5,00 €
Nichtmitglieder 15,00 €
Nichtmitglieder mit Doppel-
Mitgliedschaften
(Beitrag wie GI-Mitglieder) --,-- €

Leitungsgremium von GI/ITG-PARS

Prof. Dr. Helmar Burkhart, Univ. Basel
Dr. Andreas Döring, IBM Zürich
Prof. Dr. Dietmar Fey, Univ. Jena
Prof. Dr. Rolf Hoffmann, Sprecher, TU Darmstadt
Prof. Dr. Wolfgang Karl, Univ. Karlsruhe
Prof. Dr. Jörg Keller, FernUniversität Hagen
Prof. Dr. Christian Lengauer, Univ. Passau
Prof. Dr.-Ing. Erik Maehle, Universität zu Lübeck
Prof. Dr. Ernst W. Mayr, TU München
Prof. Dr. Wolfgang E. Nagel, TU Dresden
Dr. Karl Dieter Reinartz, stellv. Sprecher, Univ. Erlangen-Nürnberg
Prof. Dr. Hartmut Schmeck, Univ. Karlsruhe
Prof. Dr. Theo Ungerer, Univ. Augsburg
Prof. Dr. Helmut Weberpals, TU Hamburg Harburg

Sprecher

Prof. Dr.-Ing. Rolf Hoffmann
Technische Universität Darmstadt
Fachgebiet Rechnerarchitektur
Hochschulstraße 10
D-64289 Darmstadt
Tel.: (06151) 16-3611/3606
Fax: (06151) 165410
E-Mail: hoffmann@informatik.tu-darmstadt.de
URL: http://www.pars.gi-ev.de/

120

G
es

el
ls

ch
af

t f
ür

 In
fo

rm
at

ik
 e

.V
.

W
is

se
ns

ch
af

ts
ze

nt
ru

m

A
hr

st
r.

45

D
-5

31
75

 B
on

n
FR

G

PA
R

S
Ei

nl
ad

un
g

zu
r M

ita
rb

ei
t

in
 d

er
 G

I/I
TG

-F
ac

hg
ru

pp
e

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

.
G

es
el

ls
ch

af
t f

ür
 In

fo
rm

ar
ik

 e
. V

.,
Te

l.
(0

22
8)

 3
02

14
5,

 F
A

X
 (0

22
8)

 3
02

16
7,

 E
-M

ai
l:

gs
@

gi
-e

v.
de

G
I-

M
itg

lie
d

N
r.

IT

G
-M

itg
lie

d
N

r.
 So

ns
tig

e

Ic
h

be
an

tra
ge

 d
ie

 M
itg

lie
ds

ch
af

t i
n

de
r F

ac
hg

ru
pp

e
PA

R
S

,P
ar

al
le

l-A
lg

or
ith

m
en

, -
R

ec
hn

er
st

ru
kt

ur
en

un

d
Sy

st
em

so
ftw

ar
e’

.
Ic

h
bi

n
be

re
it,

 m
ei

ne
n

en
ts

pr
ec

he
nd

en
 P

A
R

S-
B

ei
tra

g
an

 d
ie

 G
es

ch
äf

ts
st

el
le

 d
er

 G
I z

u
en

tri
ch

te
n.

Ti
te

l,

 N
am

e,

 V

or
na

m
e

Fi
rm

a/
D

ie
ns

st
el

le

St
ra

ße

PL
Z,

O

rt,

La
nd

Te
le

fo
n,

D
at

um
,

 U
nt

er
sc

hr
ift

Te
le

fa
x,

Em
ai

l-A
dr

es
se

I
T
G

P
A
R
S

’08

25

	02_CfP_PASA_08.pdf
	02_CfP_PASA_08.pdf
	CALL FOR PAPERS

